A More Cautious Approach to Security Against Mass Surveillance

Jean Paul Degabriele, Pooya Farshim, and Bertram Poettering

Royal Holloway, Queen's University Belfast, Ruhr University Bochum

FSE - 11th March 2015

Outline of this Talk

1 Motivation

- 2 Algorithm Substitution Attacks
- 3 The BPR14 Model
- 4 Analysis & Results

The Snowden Revelations

- Since June 2013 Edward Snowden has been disclosing classified documents about mass surveillance programs carried by the NSA and GCHQ.
- Until now, there has been no indication that these agencies are capable of breaking any of the main cryptographic primitives/assumptions which we believe to be secure/hard.
- Instead these agencies have resorted to more devious means:
 - Manoeuver standardisation bodies to advance the backdoored EC DRBG and the TLS Ext Random.
 - Secretly pay RSA to make the EC DRBG the default option in their cryptographic library.
 - Forcing vendors and service providers (through secret courts) to provide user data, secret keys, access to infrastructure, etc.
 - Intercept postal shipping to replace networking hardware.
 - Inject malware in network data carrying executable files.

Guarding Against Surveillance

- In light of these events it is natural to ask what other means could be employed by such entities.
- Following the Snowden revelations, a first step in this direction is the recent work of Bellare, Paterson and Rogaway from CRYPTO 2014 [BPR14].
- The focus of their study is Algorithm Substitution Attacks (ASA) with respect to symmetric encryption.

Algorithm Substitution Attacks

- Consider some type of closed-source software that makes use of a standard symmetric encryption scheme.
- In an ASA the code of the standard encryption scheme is replaced with that of an alternative scheme that the attacker has authored.
- Following the terminology of [BPR14] we call this latter scheme a subversion and we refer to the attacker as big brother.

If the code is obfuscated can we protect against this?

Algorithm Substitution Attacks

- Consider some type of closed-source software that makes use of a standard symmetric encryption scheme.
- In an ASA the code of the standard encryption scheme is replaced with that of an alternative scheme that the attacker has authored.
- Following the terminology of [BPR14] we call this latter scheme a subversion and we refer to the attacker as big brother.

If the code is obfuscated can we protect against this?

Algorithm Substitution Attacks

- Note that ASAs are different from backdoors, as in the case of the Dual EC DRBG.
- The focus here is whether an implementation of the scheme offers the claimed security. The original scheme is assumed to be secure and free from backdoors.
- ASAs have been considered in the past in the works of Young and Yung, and others, under the name of Kleptography. In addition ASAs often rely on constructing subliminal channels.
- However [BPR14] is the first to provide a formal treatment of ASAs and also provides a more general analysis.

Algorithm Substitution Attacks

- Note that ASAs are different from backdoors, as in the case of the Dual EC DRBG.
- The focus here is whether an implementation of the scheme offers the claimed security. The original scheme is assumed to be secure and free from backdoors.
- ASAs have been considered in the past in the works of Young and Yung, and others, under the name of Kleptography. In addition ASAs often rely on constructing subliminal channels.
- However [BPR14] is the first to provide a formal treatment of ASAs and also provides a more general analysis.

Subversions

- For a symmetric encryption scheme $\Pi = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ its subversion is a pair $\widetilde{\Pi} = (\widetilde{\mathcal{K}}, \widetilde{\mathcal{E}})$.
- In an ASA the attacker samples a subversion key $\widetilde{\mathcal{K}}$ and substitutes \mathcal{E} with $\widetilde{\mathcal{E}}_{\widetilde{\mathcal{K}}}$, where $\widetilde{\mathcal{E}}$ takes the same inputs as \mathcal{E} together with $\widetilde{\mathcal{K}}$.
- Since the code is assumed to be obfuscated, the subversion key \widetilde{K} is inaccessible to the user.
- This gives big brother much more power to reach his goal.

Main Results From BPR14

- Propose two complementary security definitions:
 - A notion of surveillance resilience to prove positive results.
 - A notion of undetectability to prove negative results.
- The biased ciphertext attack, consisting of an undetectable subversion, applicable to any probabilistic scheme, which allows the attacker to recover the user's key.
- Identify a property of symmetric encryption schemes, called unique ciphertexts, that is sufficient to guarantee surveillance resilience.
- They show that most nonce-based schemes can be used to build schemes with unique ciphertexts.

Surveillance Resilience [BPR14]

Game SURV^{*B*}_{Π Π} $b \leftarrow \{0,1\}, \widetilde{K} \leftarrow \widetilde{\mathcal{K}}, b' \leftarrow \mathscr{B}^{\mathrm{Key},\mathrm{Enc}}(\widetilde{K})$ return (b = b') Key(i)if $K_i = \bot$ then $K_i \leftarrow$ $\mathcal{K}, \sigma_i \leftarrow \varepsilon$ return ε $E_{NC}(M, A, i)$ if $K_i = \bot$ then return \bot if b = 1 then $(C, \sigma_i) \leftarrow \mathcal{E}(K_i, M, A, \sigma_i)$ else $(C, \sigma_i) \leftarrow \widetilde{\mathcal{E}}(\widetilde{K}, K_i, M, A, \sigma_i, i)$ return C

$$\mathsf{Adv}^{\mathrm{srv}}_{\Pi,\widetilde{\Pi}}(\mathscr{B}) := 2 \cdot \mathsf{Pr}\left[\operatorname{SURV}^{\mathscr{B}}_{\Pi,\widetilde{\Pi}}
ight] - 1$$

Undetectability [BPR14]

$$\mathsf{Adv}^{ ext{det}}_{\Pi,\widetilde{\Pi}}(\mathscr{U}) := 2 \cdot \mathsf{Pr}\left[\operatorname{DETECT}^{\mathscr{U}}_{\Pi,\widetilde{\Pi}}
ight] - 1$$

The Decryptability Condition

- Whithout additional restrictions it is always possible to find a subversion Îl such that ℬ can win the SURV game with probability one.
- Accordingly BPR require the following 'minimal' condition of undetectability that every subversion must satisfy.

Definition (Decryptability)

A subversion $\widetilde{\Pi} = (\widetilde{\mathcal{K}}, \widetilde{\mathcal{E}})$ is said to satisfy decryptability with respect to the scheme $\Pi = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ if the encryption scheme $(\widetilde{\mathcal{K}} \times \mathcal{K}, \widetilde{\mathcal{E}}, \mathcal{D}')$ is perfectly correct, where $\mathcal{D}'((\widetilde{\mathcal{K}}, \mathcal{K}), \mathcal{C}, \mathcal{A}, \varrho) = \mathcal{D}(\mathcal{K}, \mathcal{C}, \mathcal{A}, \varrho)$.

Analysis of The BPR Model

The first thing to note is that:

$\mathsf{Undetectability} \Longrightarrow \mathsf{Decryptability}$

 Undetectability allows *U* a small success probability but the same is not true for Decryptability.

■ This is overly restrictive on 𝔅. There is no reason why 𝔅 would only consider subversions that have zero probability of being detected.

Analysis of The BPR Model

The first thing to note is that:

```
\mathsf{Undetectability} \Longrightarrow \mathsf{Decryptability}
```

- Undetectability allows *U* a small success probability but the same is not true for Decryptability.
- This is overly restrictive on 𝔅. There is no reason why 𝔅 would only consider subversions that have zero probability of being detected.

So why not relax the decryptability condition by allowing a small probability of error?

Analysis of The BPR Model

The first thing to note is that:

```
\mathsf{Undetectability} \Longrightarrow \mathsf{Decryptability}
```

- Undetectability allows *U* a small success probability but the same is not true for Decryptability.
- This is overly restrictive on 𝔅. There is no reason why 𝔅 would only consider subversions that have zero probability of being detected.
- So why not relax the decryptability condition by allowing a small probability of error?

Input-Triggered Subversions

This slight relaxation renders the notion of surveillance resiliance unsatisfiable!

For any scheme Π = (K, E, D) there exists a subversion Π̃ = (K̃, Ẽ) defined by:

$$\frac{\text{Algorithm } \widetilde{\mathcal{E}}_{\widetilde{K}}(K, M, A, \sigma, i)}{C \leftarrow \mathcal{E}_{K}(M, A, \sigma)}$$

if $\mathbf{R}(\widetilde{K}, K, M, A, \sigma, i) = \text{true}$
then return $(C \parallel K, \sigma)$
else return (C, σ)

■ This subversion is decryptable (with negligible error) and is in fact undetectable, but there exists an adversary ℬ such that Adv^{srv}_{Π,Π}(ℬ) = 1.

Input-Triggered Subversions

- This slight relaxation renders the notion of surveillance resiliance unsatisfiable!
- For any scheme Π = (K, E, D) there exists a subversion Π̃ = (K̃, Ẽ) defined by:

$$\frac{ \text{Algorithm } \widetilde{\mathcal{E}}_{\widetilde{K}}(K, M, A, \sigma, i) }{ C \leftarrow \mathcal{E}_{K}(M, A, \sigma) } \\ \text{if } \mathbf{R}(\widetilde{K}, K, M, A, \sigma, i) = \text{true} \\ \text{then return } (C \parallel K, \sigma) \\ \text{else return } (C, \sigma) }$$

• This subversion is decryptable (with negligible error) and is in fact undetectable, but there exists an adversary \mathscr{B} such that $\operatorname{Adv}_{\Pi,\widetilde{\Pi}}^{\operatorname{srv}}(\mathscr{B}) = 1.$

The Proposed Surveillance Resilience Definition

- Perfect decryptability implicitly excludes this important class of subversions thereby imposing artificial limitations on big brother.
- We propose a security definition that builds on ideas from [BPR14] but disposes of the the decryptability requirement altogether.
- A one-time detection strategy does not suffice, instead it seems that a continuous detection strategy is necessary.
- In addition our security definition provides quantifiably stronger guarantees of detecting an ASA.

The Proposed Surveillance Resilience Definition

$$\begin{array}{l} \hline \textbf{Game \ \overline{SURV}_{\Pi,\widetilde{\Pi}}^{\mathscr{B}}} \\ \hline b \leftarrow \mathfrak{s} \{0,1\}, \widetilde{K} \leftarrow \mathfrak{s} \widetilde{\mathcal{K}} \\ b' \leftarrow \mathscr{B}^{\mathrm{Key,Enc}}(\widetilde{K}) \\ \mathrm{return} \ (b = b') \\ \hline \hline \underline{\mathrm{Key}(i)} \qquad /\!\!/ \ \mathrm{called \ at \ most \ once} \\ \hline \mathrm{if} \ K_i = \bot \ \mathrm{then} \ K_i \leftarrow \mathfrak{s} \ \mathcal{K}, \sigma_i \leftarrow \varepsilon \\ \mathrm{return} \ \varepsilon \\ \hline \hline \underline{\mathrm{ENc}(M,A,i)} \\ \mathrm{if} \ K_i = \bot \ \mathrm{then} \ \mathrm{return} \ \bot \\ \mathrm{if} \ b = 1 \ \mathrm{then} \ (C,\sigma_i) \leftarrow \mathcal{E}(K_i, M, A, \sigma_i) \\ \mathrm{else} \ (C,\sigma_i) \leftarrow \widetilde{\mathcal{E}}(\widetilde{K}, K_i, M, A, \sigma_i, i) \\ \mathrm{return} \ C \end{array}$$

This is the SURV game from [BPR14] formulated in the single-user setting.

Degabriele, Farshim, Poettering

The Proposed Surveillance Resilience Definition

$$\begin{array}{l} \hline \textbf{Game \ \overline{DETECT}_{\Pi,\widetilde{\Pi}}^{\mathscr{B},\mathscr{U}} \\ \hline b \leftarrow \mathfrak{s} \{0,1\}, \widetilde{K} \leftarrow \mathfrak{s} \widetilde{\mathcal{K}} \\ b' \leftarrow \mathscr{B}^{\mathrm{Key,Enc}}(\widetilde{K}), b'' \leftarrow \mathscr{U}(T) \\ \mathrm{return} \ (b = b'') \\ \hline \hline \textbf{Key}(i) \qquad /\!\!/ \ \mathrm{called \ at \ most \ once} \\ \hline \mathbf{if} \ K_i = \bot \ \mathrm{then} \ K_i \leftarrow \mathfrak{s} \ \mathcal{K}, \sigma_i \leftarrow \varepsilon \\ T \leftarrow (K_i, i) \\ \mathrm{return} \ \varepsilon \\ \hline \hline \frac{\mathrm{Enc}(M, A, i)}{\mathrm{if} \ b = 1 \ \mathrm{then} \ \mathrm{return} \ \bot \\ \mathbf{if} \ b = 1 \ \mathrm{then} \ (C, \sigma_i) \leftarrow \mathcal{E}(K_i, M, A, \sigma_i) \\ \mathrm{else} \ (C, \sigma_i) \leftarrow \widetilde{\mathcal{E}}(\widetilde{K}, K_i, M, A, \sigma_i, i) \\ T \leftarrow T \parallel (M, A, C) \\ \mathrm{return} \ C \end{array}$$

The Proposed Surveillance Resilience Definition

The advantages corresponding to each game are defined as:

$$\mathsf{Adv}_{\Pi,\widetilde{\Pi}}^{\overline{\operatorname{srv}}}(\mathscr{B}) := 2 \cdot \mathsf{Pr}\left[\, \overline{\operatorname{SURV}}_{\Pi,\widetilde{\Pi}}^{\mathscr{B}} \, \right] - 1 \,,$$

and

$$\mathsf{Adv}_{\Pi,\widetilde{\Pi}}^{\overline{\det}}(\mathscr{B},\mathscr{U}) := 2 \cdot \mathsf{Pr}\left[\, \overline{\mathrm{DETECT}}_{\Pi,\widetilde{\Pi}}^{\mathscr{B},\mathscr{U}} \, \right] - 1 \, .$$

Definition

The pair (Π, \mathscr{U}) is said to be surveillance resilient if for all subversions Π and all adversaries \mathscr{B} it hold that $\mathbf{Adv}_{\Pi,\widetilde{\Pi}}^{\overline{\det}}(\mathscr{B}, \mathscr{U}) \geq \mathbf{Adv}_{\Pi,\widetilde{\Pi}}^{\overline{\mathrm{Srv}}}(\mathscr{B})$.

Notes on The Proposed Definition

- BPR's DETECT game was meant for negative results, while our DETECT game replaces the decryptability condition.
- Contrary to the DETECT game, in DETECT the detection test is universal and can be run by a single user.
- In the proposed security definition, *U* is guaranteed to **always** detect a subversion. In the BPR security definition we were only guranteed a **non-zero** success probability of detecting a subversion.

Security of Unique Ciphertext Schemes

- An encryption scheme is said to have unique ciphertexts if for all message sequences and all keys there exists exactly one ciphertext sequence that decrypts to this message sequence.
- Schemes with unique ciphertexts must be deterministic, but not all deterministic schemes have unique ciphertexts.

Theorem

Let $\Pi = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ be a symmetric encryption scheme with unique ciphertexts. Then for every Π there exists a detection test \mathscr{U} such that for all subversions $\widetilde{\Pi}$ and all adversaries \mathscr{B} the following holds $\operatorname{Adv}_{\Pi, \widetilde{\Pi}}^{\overline{\det}}(\mathscr{B}, \mathscr{U}) \geq \operatorname{Adv}_{\Pi, \widetilde{\Pi}}^{\overline{\operatorname{stv}}}(\mathscr{B})$.

Limitations of The Analysis

- The analysis from [BPR14] and by extensions ours as well, only considers leakage of information through ciphertexts.
- Thus other types of ASAs may be possible based on side information such as timing, power analysis, electromagnetic radiation, etc. These settings are **not** covered by our analysis.
- Arguably, such ASAs may be harder to mount as they need to be targeted attacks.

- We build on the work of [BPR14] to converge to a better security model for ASAs and re-established their positive results.
- However our analysis highlights that detecting ASAs is more challenging than what was indicated by [BPR14].