
Authenticated Encryption
in Theory and in Practice

Jean Paul Degabriele

Thesis submitted to the University of London
for the degree of Doctor of Philosophy

Information Security Group
Department of Mathematics

Royal Holloway, University of London

2014

Declaration

These doctoral studies were conducted under the supervision of Prof. Kenneth G.
Paterson.

The work presented in this thesis is the result of original research carried out by
myself, in collaboration with others, whilst enrolled in the Department of Mathe-
matics as a candidate for the degree of Doctor of Philosophy. This work has not
been submitted for any other degree or award in any other university or educational
establishment.

Jean Paul Degabriele
August, 2014

2

Acknowledgements

First and foremost, I would like to thank my supervisor Kenny Paterson. It was
with great luck that I met Kenny during my M.Sc. studies at Royal Holloway. He
encouraged my interest in research and gave me the opportunity to pursue a Ph.D. I
am deeply grateful for his guidance, support, and dedication throughout my studies,
both on an academic and personal level.

A major part of the work presented in this thesis is the product of fruitful collabo-
rations with Alexandra Boldyreva and Martijn Stam. I also had the chance to work
with Anja Lehmann, Nigel Smart, Mario Strefler, and Gaven Watson. It was a great
pleasure to work with you all. I am also indebted with Jonathan Katz who hosted
me in his group at the University of Maryland.

I am glad to have pursued my studies at Royal Holloway; the Information Security
Group has always provided me with a friendly and vibrant environment. I have made
many friends here, but special thanks go to Anastasia, Charles, Eduarda, Gaven,
Liz, Nadhem, Pooya, and Susan. I have also had some remarkable housemates with
whom I shared many interesting conversations and who provided me with great
support: Andrew, Ella, David, Giovanna, Jamie, Maithi, Peter, Prapti, Roe, and
Vallu. Thank you all for making this experience so enjoyable.

Finally, I would like to thank my mother who always supported me through all my
endeavours. I dedicate this to you.

3

Abstract

Authenticated encryption refers to a class of cryptographic schemes that simulta-
neously provide message confidentiality and message authenticity. It is an essential
component of almost every cryptographic protocol that is used in practice. In this
thesis we aim to narrow the gap that exists between authenticated encryption as
used in practice, and authenticated encryption as studied in the framework of theo-
retical cryptography. We examine how certain types of attacks are not captured by
the current techniques, and show how this can be remedied by expanding existing
security models to capture a wider array of attacks.

We begin with a case study of IPsec: a widely deployed security protocol for pro-
tecting data across the Internet and other networks. Despite its popularity, IPsec’s
security has not received much formal treatment. As a security protocol it offers a
relatively high degree of configurability, so as to accommodate multiple usage scenar-
ios. We here present a new set of efficient attacks that fully break the confidentiality
of half of the configurations that are permitted by the IPsec standard.

Next we turn our attention to the enhancement of security models. In particular
we consider attacks that exploit distinguishable decryption failures and ciphertext
fragmentation. A number of recent attacks against practical cryptosystems, includ-
ing our attacks on IPsec, fall in one of these two categories. We extend the current
security models to capture such attacks, and formulate new security notions to cap-
ture vulnerabilities that arise in this new setting. We then go on to explore how
these notions relate to each other, and construct authenticated encryption schemes
that satisfy our security notions.

4

Contents

1 Introduction 7
1.1 The Evolution of Modern Cryptography 7
1.2 Motivation . 9
1.3 Thesis Structure . 11
1.4 Associated Publications . 12

2 Symmetric Encryption 13
2.1 Preliminaries . 13

2.1.1 Provable Security . 13
2.1.2 Notation . 16

2.2 Building Blocks . 17
2.2.1 Block Ciphers . 17
2.2.2 Message Authentication . 20

2.3 Encryption Schemes . 23
2.3.1 Syntax . 23
2.3.2 Notions of Confidentiality . 24
2.3.3 Modes of Operation . 28

2.4 Authenticated Encryption . 32
2.5 Stateful Security . 38

3 Secure Network Protocols 42
3.1 The TCP/IP Protocol Suite . 42

3.1.1 IP . 43
3.1.2 TCP and UDP . 46

3.2 Three Ubiquitous Security Protocols 48
3.2.1 TLS . 48
3.2.2 SSH . 50
3.2.3 IPsec . 52

3.3 Related Theoretical Analysis . 57
3.4 Padding Oracle Attacks . 60
3.5 A Ciphertext Fragmentation Attack on SSH 62

4 New Attacks on IPsec 65
4.1 Introduction . 65
4.2 Preliminaries . 68

4.2.1 IP and IPsec . 69
4.2.2 Mauling IPsec-Protected Packets 70
4.2.3 ESP Trailer Oracles . 72

5

CONTENTS

4.3 The Attacks . 73
4.3.1 Attack 1: A Chosen Plaintext Attack 74
4.3.2 Attack 2: TTL Expiry . 76
4.3.3 Attack 3: Fragmentation . 78

4.4 Attacking Other Configurations . 81
4.5 Experimental Results . 83
4.6 Summary . 85

5 Distinguishable Decryption Failures 87
5.1 Motivation . 87
5.2 The Multiple-Error Setting . 90
5.3 Relations and Separations . 97

5.3.1 Preliminary Note. 97
5.3.2 Straightforward Relations. 98
5.3.3 Revisiting Classic Relations. 98
5.3.4 New Relations. 102
5.3.5 Necessity of Strong Ciphertext Integrity. 103
5.3.6 More Separations . 108

5.4 Multiple-Error Authenticated Encryption 114
5.5 The Security of Encode-then-Encrypt-then-MAC 118
5.6 Summary . 123

6 Ciphertext Fragmentation 124
6.1 Introduction . 125

6.1.1 Related Work . 126
6.2 Symmetric Encryption Supporting Fragmentation 127

6.2.1 Unified Syntax . 127
6.2.2 Degrees of Statefulness . 132

6.3 Confidentiality . 134
6.3.1 The Stateful Notion . 134
6.3.2 A Notion for SBB Schemes 138

6.4 Boundary Hiding . 139
6.4.1 Security Definitions . 140
6.4.2 Unsatisfiability of SBB Boundary Hiding 146

6.5 Denial of Service . 147
6.5.1 Security Definitions . 148

6.6 Constructions . 152
6.6.1 Applying Instantaneously Decodable Postprocessing (IDP) . 152
6.6.2 The InterMAC Construction 160
6.6.3 A SBB Variant of InterMAC 167

6.7 Summary . 172

Bibliography 174

6

Chapter 1

Introduction

Contents

1.1 The Evolution of Modern Cryptography 7

1.2 Motivation . 9

1.3 Thesis Structure . 11

1.4 Associated Publications . 12

This chapter gives an overview of the thesis. We provide the motivation for our

research and describe the overall structure of this thesis.

1.1 The Evolution of Modern Cryptography

In recent years cryptography has flourished and it is increasingly present in various

aspects of our everyday lives. Cryptography dates back to ancient times, when it

mostly dealt with secret communication, but has now grown to span topics such

as digital signatures, anonymity, zero knowledge proofs, secure computation, digital

currency, digital rights management, and electronic voting. Nonetheless in today’s

world, centred on telecommunications, the need for confidentiality has never been as

crucial. For hundreds of years cryptography was an underground black art, studied

and practiced only by few. Cryptography attracted more interest with the advent of

wireless communication and the Second World War, but it remained a taboo subject

and was not studied freely within academia. This started to change towards the late

70’s with the discovery of public-key cryptography [35], and has grown at a drastic

rate ever since.

Once cryptography could be studied and used freely, it attracted the attention of

mathematicians, computer scientists, and engineers. These studied the topic from

different angles, and to some extent took it in different directions. To mathemati-

7

1.1 The Evolution of Modern Cryptography

cians cryptography offered a set of interesting problems which could be solved using

number theory, combinatorics and coding theory, amongst others. Theoretical com-

puter scientists, mainly complexity theorists, were more interested in fundamental

questions such as the complexity theoretic assumptions that cryptographic appli-

cations could be based on, and which cryptographic protocols are realisable. Fi-

nally, engineers were interested in developing ‘real world’ systems, and were mainly

driven by the need for such systems. However, engineers have often unintentionally

sacrificed security for usability and practicality. While this is a far too simplistic

generalisation, it serves to give an idea of some of the driving forces that shaped

cryptography and which to some extent still exist to this day. In [87] Rogaway gives

an account of his experience at MIT, describing how cryptography was seen as a

branch of theoretical computer science that did not much countenance pragmatic

concerns. To give an idea of the divide that existed between communities, he ex-

plains how after pursuing a PhD in cryptography at MIT he was totally unaware

of Kerberos [76] which was developed by a team of engineers (outside of the theory

group) at MIT.

The distinction between the engineers’ view of cryptography as opposed to the com-

puter scientists’ view is quite clear and more or less translates to the divide between

practitioners and theoreticians. The mathematician’s view lies somewhere in be-

tween and overlaps both ends of the spectrum. In particular, theoretical computer

science is often regarded as a branch of mathematics, which makes this distinc-

tion less clear. Cryptography has undoubtedly benefited immensely from various

branches of mathematics, but often mathematicians have viewed cryptography as

an application of mathematics without much concern about the subject itself. It was

complexity theorists who put the subject on more formal grounds, and established

Modern Cryptography as we know it today. More specifically they developed the

Provable Security approach which is considered to have transformed cryptography

from an art to a science. The key ingredient to this approach is formal security defi-

nitions that permit a rigorous security analysis of cryptographic protocols. Provable

security was formulated using ideas from complexity theory where an algorithm is

considered to be efficient if it runs in polynomial time and security is proven using

reductions. This rendered the provable security approach somewhat esoteric, and

it was perceived by many to be detached from reality. Furthermore provable secu-

rity was not concerned with symmetric key cryptography, which is essential to ‘real

8

1.2 Motivation

world’ cryptography.

In the 90’s, Bellare and Rogaway set to address this discrepancy in their research

agenda. Their line of research, which they termed practice-oriented provable security

[9, 87], applies the provable security approach to practical cryptographic schemes,

and formulates its results in a way that is more meaningful to practice. Notable con-

tributions of their approach include concrete security, the treatment of symmetric-

key cryptography, and the random oracle methodology [19]. Their starting point

was to abandon asymptotics and instead formulate security in a concrete manner.

This simple alteration was pivotal in permitting the treatment of symmetric key

cryptography, since block ciphers have no security parameter and hence it is not

possible to define their security asymptotically. In addition, in the concrete setting

security theorems are formulated quantitatively rather than qualitatively, allowing

implementers to calculate key lengths and other parameter values for their required

level of security. Another key contribution of their work was to model block ciphers

as pseudorandom permutations. This has now become the accepted basic security

requirement for block ciphers, and has replaced and extended Shannon’s older for-

mulation in terms of confusion and diffusion [89]. The random oracle methodology,

while being a big source of controversy [26], has permitted a formal treatment of

many practical schemes and has encouraged the exploration of security notions for

hash functions that go beyond collision resistance and pre-image resistance. At a

more philosophical level, entrenched in the practice-oriented provable security ap-

proach [87], is the view that cryptography is socially constructed as opposed to a

view of cryptography conforming to scientific realism as the one expressed in [47]

for example.

1.2 Motivation

Despite the efforts associated with practice-oriented provable security, provable secu-

rity remains a source of controversy and divide within the cryptographic community.

One such example is the long-standing controversy that originated from the paper by

Koblitz and Menezes [67]. The authors sustain that the term ‘provable’ in provable

security is misleading and gives a false sense of 100% certainty, concealing the con-

ditional nature of proofs by reduction. In addition they point at cases where proofs

9

1.2 Motivation

were found to be flawed, reductions were not tight, or provably-secure schemes suc-

cumb to attacks outside the security model. In the conclusion to their paper, Koblitz

and Menezes refer to these cases as ‘evidence’ that cryptographic protocol design

is no more of a science than it is an art, thereby somehow discrediting provable

security. In our view, Koblitz and Menezes raise many valid points but their conclu-

sion is unfair. Reduction tightness and proof validity are evidenced because of the

provable security approach in the first place, and thereby provide a better means for

validating and contrasting the security of cryptographic schemes. The adequacy of

security models [31, 68] on the other hand we believe to be a legitimate concern that

needs to be addressed. The practical utility of provable security results is limited by

the security models that they employ. Our view is that provable security has turned

protocol design into a science, but crafting security definitions remains an art and

security models need to evolve as new practical settings and attacks emerge.

In this thesis we will develop and study security models that are more relevant to

practical settings. Our focus will be authenticated encryption schemes which com-

bine message confidentiality and data origin authenticity. Authenticated encryption

has become an essential component of almost every practical cryptographic pro-

tocol. In particular we will look at authenticated encryption as used in network

protocols. We will first present novel attacks on IPsec that exploit features not

normally captured in current security models. In particular the attacks will exploit

distinguishable decryption failures in authenticated encryption schemes, and one at-

tack will also exploit ciphertext fragmentation. Distinguishable decryption failures

relate to an adversary’s ability to distinguish distinct decryption failure events. Such

a vulnerability is usually inadvertently introduced by implementations and not nor-

mally taken into account in the theoretical analysis. Ciphertext fragmentation on

the other hand, relates to the very nature of the interface presented by IP networks

over which cryptographic protocols operate. In this setting, ciphertexts may be

delivered at the receiver’s end in an arbitrarily fragmented fashion. It turns out

that adapting authenticated encryption schemes to operate in such settings is not

trivial, and this setting raises novel security concerns that are of interest in their

own right. We will provide an extensive formal treatment of both distinguishable

decryption failures and ciphertext fragmentation, by defining appropriate security

notions, establishing relations and separations between security notions, and present

constructions that meet these notions.

10

1.3 Thesis Structure

1.3 Thesis Structure

Chapter 2 starts with an overview of the provable security approach and the prin-

ciples on which it is based. We then fix the notation and introduce some symmetric

building blocks, namely block ciphers and message authentication schemes. This

is followed by defining symmetric encryption and its security notions together with

some basic block cipher modes of operation. We then look at authenticated encryp-

tion, and how to achieve it through generic composition. The chapter ends with

extensions of security notions for symmetric encryption to the stateful setting.

In Chapter 3 we lay down the practical background required for this thesis. We

start off with a description of the TCP/IP protocol suite with a focus on some of

its intricate aspects that are relevant to our work. We then go on to describe the

three most popular secure network protocols that are in use today: TLS, SSH and

IPsec. The focus of our exposition is primarily on the authenticated encryption

component in each of these protocols. This is followed with a survey of previous

works examining the security of these protocols. We conclude the chapter with a

description of Vaudenay’s padding oracle attack [93] and the SSH attack by Albrecht,

Paterson, and Watson [1].

Chapter 4 presents a set of new attacks on various MAC-then-encrypt configu-

rations of IPsec. We describe in detail three attack strategies, none of which is

universally successful on all IPsec MAC-then-encrypt configurations, but for each

configuration at least one strategy is successful. We also give an account of our

experience in implementing the attacks on an experimental IPsec set-up.

In Chapter 5 we provide a formal treatment of distinguishable decryption failures in

symmetric encryption schemes. We revisit the classic relations for obtaining chosen-

ciphertext security from chosen-plaintext security and integrity of ciphertexts in

the light of distinguishable decryption failures. We establish a number of relations

and separations between security notions in this setting. The chapter ends with

a re-examination of the encrypt-then-MAC and MAC-then-encrypt compositions,

providing further formal grounds for preferring the former composition.

Finally in Chapter 6 we study symmetric encryption schemes supporting ciphertext

11

1.4 Associated Publications

fragmentation. We start off by defining the syntax for such schemes. This alone

proves to be non-trivial. We then identify three notions of security, relating to

confidentiality, boundary hiding, and denial of service. For each notion we consider

a weaker variant that can be met by a subclass of schemes that maintain a ‘minimal’

state. The chapter concludes with constructions from standard symmetric primitives

of schemes that meet our notions of security.

1.4 Associated Publications

Chapter 4 is joint work with Kenneth G. Paterson, and was published in the pro-

ceedings of the ACM CCS 2010 conference [30]. Chapters 5 and 6 are based on joint

work with Alexandra Boldyreva, Kenneth G. Paterson, and Martijn Stam. Chap-

ter 5 appeared in FSE 2013 [23], while the material of Chapter 6 was presented at

Eurocrypt 2012 [22]. All authors conributed equally to the above publications.

12

Chapter 2

Symmetric Encryption

Contents

2.1 Preliminaries . 13

2.1.1 Provable Security . 13

2.1.2 Notation . 16

2.2 Building Blocks . 17

2.2.1 Block Ciphers . 17

2.2.2 Message Authentication . 20

2.3 Encryption Schemes . 23

2.3.1 Syntax . 23

2.3.2 Notions of Confidentiality 24

2.3.3 Modes of Operation . 28

2.4 Authenticated Encryption 32

2.5 Stateful Security . 38

This chapter lays the required background on symmetric encryption. We present the

basic schemes and define various notions of security.

2.1 Preliminaries

2.1.1 Provable Security

Provable security refers to a paradigm in cryptography which permits us to rigor-

ously analyse and assess the security of cryptographic schemes and protocols. It is

often claimed to have revolutionised cryptography from a ‘black art’ into a science.

The approach borrows ideas from theoretical computer science and is based on two

13

2.1 Preliminaries

important concepts which form its heart and soul. The first is the formulation of se-

curity definitions. These specify the goals that cryptographic schemes are intended

to achieve, such as confidentiality and data-origin authenticity, in precise mathemat-

ical terms. A security definition is normally expressed as an experiment played by

an adversary with respect to a cryptographic scheme. Commonly the adversary is

an algorithm parametrised by its computational resources. We are then concerned

with the probability that an adversary has of ‘winning’ the experiment. The secu-

rity of a scheme is expressed in terms of the maximal winning probability over some

class of adversaries. Alternatively we say that a scheme is ‘broken’ if there exists a

‘feasible’ adversary whose winning probability exceeds the acceptible treshold by a

significant amount.

The second pillar of provable security is the reduction proof technique. A proof of

security generally boils down to bounding the winning probability of some class of

adversaries. For most cryptographic schemes and protocols, proving such bounds

without further assumptions appears to be currently beyond our reach. The difficulty

in proving such bounds is related to the hardness of proving that P 6= NP. As a re-

sult security proofs are normally conditional, in that they rely on number-theoretic

assumptions or on the security of the underlying primitives which the scheme is

built on. This is where the reduction proof technique comes in. A reduction trans-

forms an algorithm that solves problem B into an algorithm that solves problem A.

We normally require that the transformation be efficiently computable. If such a

transformation exists we say that problem A reduces to problem B. Now consider a

scheme that is based on a block cipher. In order to prove its security we construct

a reduction that transforms any adversary which breaks the scheme’s security to an

adversary that breaks the security of the block cipher. By assumption the block

cipher is secure. Hence, by a contrapositive argument, it follows that the scheme

is also secure. Put differently, the reduction shows that the only way to break the

scheme is to find a flaw in the underlying primitive, in this case the block cipher.

As a consequence of the reduction we need not bother with the cryptanalysis of the

scheme, and we can focus instead on the cryptanalysis of the underlying primitive.

Block ciphers like AES and DES have been thoroughly analysed for some years now

and we are quite confident about their security. The reductionist approach allows

us to transfer this confidence onto new cryptographic schemes that are built from

them.

14

2.1 Preliminaries

It is worth emphasising that such reductions are only possible because we have formal

security definitions that permit a mathematical treatment. The design of security

definitions is an intricate craft that is often underestimated and not given sufficient

attention. Security definitions need to be simple enough to be mathematically man-

ageable while at the same time encompass the lines of attack that are possible in

complex practical settings. Every so often practice points out applications for which

current security definitions turn out to be inadequate and require reconsideration.

This ‘gap’ between theory and practice is a major theme of this thesis. In the fol-

lowing chapters we will see practical settings for which current security notions are

inadequate and we will attempt to resolve this gap. A more in-depth discussion

about the role and impact of definitions in the field of cryptography can be found

in [86].

There are other paradigms in cryptography that fall under the umbrella of provable

security. One such example is the information-theoretic approach, where the term

‘provable’ makes even more sense since such security proofs are unconditional. How-

ever the computational paradigm which we just described tends to be more relevant

to practice and allows for certain types of cryptography, such as public key cryptog-

raphy, that are simply not possible in the information-theoretic setting. The origin

of the computational paradigm is normally attributed to the work of Goldwasser

and Micali from 1982 [50]. Being a field mainly led by the theoretical community it

initially evolved in a complexity-theoretic framework where algorithms are regarded

as ‘efficient’ if they run in polynomial time and adversarial success probabilities are

considered to be ‘acceptable’ if bounded by a negligible function. A security pa-

rameter is normally introduced such that running time and success probabilities can

be expressed as functions of this parameter. Expressed in this framework, provable

security results are not very meaningful to cryptographic practice. For instance,

in symmetric cryptography block ciphers have fixed dimensions, and there is no

security parameter that one can vary in order to obtain the required security level.

A more practically relevant approach was developed in a set of papers by Bellare

and Rogaway [18, 15, 14]. As opposed to the asymptotic approach where a scheme is

secure if all polynomial-time adversaries have a negligible success probability, their

approach quantifies the success probability in terms of the adversary’s resources.

This is often referred to as concrete security. This approach entails a number of

15

2.1 Preliminaries

important differences. First and foremost the computational model that is assumed

by the adversary becomes relevant in the concrete setting. Generally some RAM

computational model is assumed as these better capture the architecture of modern

computers. Security is now quantitative rather than just qualitative, and it allows

us to better compare and contrast the security of cryptographic schemes. Another

aspect that is surfaced by the concrete setting is the idea of reduction tightness.

A reduction is essentially an algorithm, and the more efficient it is the tighter the

reduction. In general for a specific scheme, tighter reductions yield better security

bounds and are therefore desirable.

While the provable security paradigm is applicable to many sub-areas of cryptog-

raphy, in this thesis we are mainly concerned with symmetric cryptography. We

now introduce some notation, and then present the primitives and cryptographic

schemes together with their corresponding security definitions that will be used in

later chapters. Our treatment will mainly be in the concrete setting.

2.1.2 Notation

Unless otherwise stated, an algorithm may be randomised. An adversary is an

algorithm. For any algorithm A we use y ← A(x1, x2, . . .) to denote executing A
with fresh coins on inputs x1, x2, . . . and assigning its output to y. If S is a set then

|S| denotes its size, and y ← $ S denotes the process of selecting an element from

S uniformly at random and assigning it to y. The set of all finite binary strings

is denoted by {0, 1}∗. For any positive integer n and bit b, we denote by bn the

string of n consecutive b’s and {0, 1}n represents the set of all binary strings of

length n. The empty string is represented by ε. For any two strings w and z and

positive integers i and j, w ‖ z denotes their concatenation, w ⊕ z denotes their

bitwise XOR, w � z denotes the greatest common prefix of w and z, w % z denotes

the remainder string of w with respect to w � z (i.e. w = w � z ‖ w % z), and

|w| denotes the length of w. Unless stated otherwise, w[i] denotes the ith bit of w,

and w[i, j] denotes the substring w[i] ‖ w[i + 1] ‖ . . . ‖ w[j]. For any n ∈ N, and

any vector of strings w = [w1, w2, . . . , wn], we define the concatenation orperator as

||(w) = w1 ‖ w2 ‖ . . . ‖ wn. If j is a non-negative integer, then 〈j〉` denotes the

unsigned `-bit binary representation of j. Accordingly 〈·〉−1 represents the inverse

16

2.2 Building Blocks

mapping which maps strings of any length to N. If w is an `-bit string and i is an

integer we use w + i as shorthand for 〈〈w〉−1 + i mod 2`〉`. We use Func(X ,Y) to

denote the set of all functions with domain X and codomain Y. Similarly Perm(X)

denotes the set of all permutations over the domain X . We will often have that

X = {0, 1}` or X = {0, 1}∗, and Y = {0, 1}n for some positive integers ` and

n. Accordingly we abbreviate notation for the corresponding sets of functions and

permutations to Func(`, n), Func(∗, n), and Perm(`) respectively. A list L is a triple

(I,S, f), where I is a set of integers acting as indexes, S is a set containing the

members of the list, and f is a bijection mapping indexes to members of the list.

We use () to denote the empty list, i.e. the list where I = ∅,S = ∅. For an integer i

we denote by Li the element of the list f(i), and use Li ← w to denote the process of

assigning I ← I ∪ {i} and S ← S ∪ {w}, and letting f(i) = w. In addition we may

apply set operators to the list, treating it as the set S. Finally Pr [P : E] denotes

the probability of event E occurring after having executed process P .

2.2 Building Blocks

2.2.1 Block Ciphers

Block ciphers are central to symmetric cryptography, and constitute an essential

component of almost any cryptographic protocol that is used in practice. Their

proliferation can probably be best attributed to the fact that they constitute a simple

and yet versatile primitive with efficient implementations. Block-cipher design has

been an active area of research for more than 30 years and is a relatively mature

area of study within cryptography. In addition, popular block ciphers like DES

and AES have been intensively cryptanlysed and to this day no severe security flaw

has been discovered in their design. This serves as empirical evidence to show that

block ciphers can be realised securely in practice and therefore constitute a good

primitive on which to build other schemes. Unfortunately this is the best we have

currently, since as was already alluded to in Section 2.1.1, proving that a block

cipher is unconditionally secure would imply that P 6= NP.

Formally a block cipher is a function E : {0, 1}k × {0, 1}n → {0, 1}n which takes a

k-bit string and an n-bit string as input and returns an n-bit string as its output.

17

2.2 Building Blocks

The key length k and block length n are parameters associated to the block cipher,

and vary according to the block cipher’s design. For each key K ∈ {0, 1}k we let

the function EK : {0, 1}n → {0, 1}n be defined by EK(X) = E(K,X). Accordingly

we can view a block cipher as a family of functions where each function is identified

by the key. For any block cipher E, and any key K, it is generally required that

the function EK be a permutation, implying the existence of an inverse function

E−1
K such that E−1

K (EK(X)) = X. In terms of security what we normally require

from block ciphers is for them to constitute good pseudorandom functions or good

pseudorandom permutations. Pseudorandom functions were introduced by Goldre-

ich, Goldwasser and Micali in [48, 49], but interestingly it was not until the work of

Bellare, Kilian, and Rogaway that they were used to model block ciphers [15].

Definition 2.1: Pseudorandom Functions. Let F : K × X → Y be a function

family indexed by the set K. Consider an adversary A with oracle access to some

function with domain X and codomain Y, and which returns a single bit as its

output. We define the prf-advantage of adversary A with respect to the function

family F as:

Advprf
F (A) = Pr

[
K ←$K : AFK(·) = 1

]
− Pr

[
f ←$ Func(X ,Y) : Af(·) = 1

]
.

F is said to be a pseudorandom function (PRF), if for every adversary A with

reasonable resources its prf-advantage Advprf
F (A) is small.

Since this is the first security definition that we present, a few remarks are in order.

The advantage represents the adversary’s success probability; in this case its ability

to distinguish between the two experiments. The advantage may be specified with

respect to a single adversary or a class of adversaries. The latter allows us to

quantify the security of a primitive or scheme, by the maximum advantage over

all adversaries with resources bounded by some set of values R . The resources of

interest are usually the number of oracle queries that the adversary makes, the size

of the queries, and the adversary’s running time. By convention [15], the running

time of the adversary includes its actual running time and the length of the RAM

program that describes the adversary. This convention is intended to eliminate

pathologies caused by adversaries which embed arbitrarily large lookup tables in

their description. We will denote the maximum advantage by Advprf
F (R), or simply

18

2.2 Building Blocks

Advprf
F to denote an absolute bound over all adversaries with reasonable resources.

Security theorems will relate the advantage of a scheme to the advantages of its

constituent primitives. It is then up to protocol designers to plug in advantage

estimates for their primitives and interpret small and reasonable according to their

application requirements.

Let us now turn our attention to the intuitive notions that the above security def-

inition aims to capture. Note that picking a function at random from the set Func

is equivalent to assigning f(x) a uniformly random value from the set Y for each

input x ∈ X . The above definition states that a function family F is pseudoran-

dom, if no computationally feasible adversary can distinguish effectively between a

random instance of F and a random function. It then follows that, to an adversary,

the PRF’s output will appear random and uncorrelated both from the input and

from other outputs. Thus pseudorandom functions capture the properties that we

normally require from block ciphers. However a block cipher can be more accurately

described as a collection of permutations; accordingly we can define pseudorandom

permutations in a similar manner.

Definition 2.2: Pseudorandom Permutations. Let Π : K × X → X be a

permutation family indexed by the set K. Consider an adversary A with oracle

access to some permutation over the set X , and which returns a single bit as its

output. We define the prp-advantage of adversary A with respect to the function

family Π as:

Advprp
Π (A) = Pr

[
K ←$K : AΠK(·) = 1

]
− Pr

[
π ←$ Perm(X) : Aπ(·) = 1

]
.

Π is said to be a pseudorandom permutation (PRP), if for every adversary A with

reasonable resources its prp-advantage Advprp
Π (A) is small.

Similarly to the previous case, we can think of a random permutation as assigning

a random value to π(x) for each x ∈ X , with the sole distinction that the output

values are now sampled from X and without replacement. The above notion can

be strengthened by additionally providing the adversary with access to the inverse

permutation (in each case). Permutation families which meet this stronger notion

are called Strong Pseudorandom Permutations (SPRP). While it is more natural

19

2.2 Building Blocks

to model block ciphers as (S)PRPs, often their analysis may be considerably sim-

pler if modelled as PRFs. The following lemma [15] addresses precisely this issue.

In essence it says that for any good block cipher the prp-advantage and the prf-

advantage are always close; i.e. they do not differ by more than the amount given

by the birthday attack. Thus for sufficiently large block sizes, PRPs make good

PRFs.

Result 2.1: PRP/PRF Switching Lemma cf. [15, Proposition 2.5].

Let F : K×X → X be a function family indexed by the set K. Let A be an adversary

that makes at most q queries to its oracle. Then∣∣∣Advprf
F (A)−Advprp

F (A)
∣∣∣ ≤ q(q − 1)

2|X |
.

2.2.2 Message Authentication

Message authentication allows communicating parties who share a secret key to

verify that a received message indeed originates from the party who claims to have

sent it. Apart from providing a solution to this specific cryptographic problem,

message authentication schemes also serve as a useful primitive for constructing

other cryptographic protocols.

A message authentication scheme MA = (K, T ,V) is a triple of algorithms with an

associated message space M ⊆ {0, 1}∗. The randomised key-generation algorithm

K takes no input and returns a secret key K. We will sometimes use K to denote

the set of keys that may be output by the key-generation algorithm. The tagging

algorithm T which may be randomised or stateful, takes as input a secret key K ∈ K,

and a message m ∈M, and returns a tag τ ∈ {0, 1}∗. The deterministic verification

algorithm V takes as input the secret key K ∈ K, a message m ∈M, and a candidate

tag τ ′, to return a symbol v ∈ {valid,⊥} denoting whether τ ′ is a valid tag for m

or not. We require that for any key K ∈ K and any m ∈M

Pr [τ ← TK(m) : VK(m, τ) = valid] = 1.

A number `tag ≥ 1 is called the tag length associated to the scheme if for any key

20

2.2 Building Blocks

K ∈ K and any m ∈M

Pr [τ ← TK(m) : |τ | = `tag] = 1.

A special type of message authentication scheme which is by far the most common

in practice, is the message authentication code (MAC). A MAC has the additional

property that its tagging algorithm is stateless and deterministic, and its verification

algorithm is given by:

VK(m, τ)

τ ′ ← TK(m)
if (τ ′ = τ) then return valid

return ⊥

The standard security notion for message authentication schemes is existential un-

forgeability under chosen message attacks (UF-CMA). This is an adaptation to the

symmetric setting of the corresponding notion for signature schemes introduced by

Golwasser, Micali, and Rivest [51]. An adversary is allowed to obtain tags for some

number of messages of its choice, and wins if it can output a new message together

with a valid tag. A stronger variant of this notion is termed strong unforgeabily

under chosen message attacks (SUF-CMA). In this variant the adversary is also

granted a ‘win’ if it can forge a new tag for a previously queried message. We define

the two notions more formally below.

Definition 2.3: (S)UF-CMA. LetMA = (K, T ,V) be a message authentication

scheme. For an adversary A, define experiments Expuf-cma
MA (A) and Expsuf-cma

MA (A)

as shown in Figure 2.1. In both experiments, a key K is first generated by calling K .

The adversary A is then given access to a tagging oracle Tag(·) and a verification

oracle Ver(·, ·). In Expuf-cma
MA (A) the adversary wins if it makes a successful verifi-

cation query for some message which it had not previously queried to the tagging

oracle. In Expsuf-cma
MA (A) the adversary wins if it makes a successful verification

query for a message-tag pair that was not previously returned by the tagging oracle.

21

2.2 Building Blocks

Expuf-cma
SE (A) Expsuf-cma

SE (A)

K ← K
L← ∅,win← 0

ATag(·),Ver(·,·)

return win

Tag(m)

τ ← TK(m)

L← L ∪m L← L ∪ (m, τ)

return τ

Ver(m, τ)

v ← VK(m, τ)

if v = valid and m 6∈ L then if v = valid and (m, τ) 6∈ L then

win← 1
return v

Figure 2.1: Experiments to define UF-CMA and SUF-CMA security. For UF-CMA
the boxed code is excluded, whereas for SUF-CMA the boxed code replaces the code
adjacent to it.

For each experiment we define the adversary’s advantage as:

Advuf-cma
MA (A) = Pr

[
Expuf-cma

MA (A) = 1
]
,

Advsuf-cma
MA (A) = Pr

[
Expsuf-cma

MA (A) = 1
]
.

The schemeMA is said to be UF-CMA (or SUF-CMA) secure, if for every adversaryA
with reasonable resources its advantage Advuf-cma

MA (A) (respectively Advsuf-cma
MA (A))

is small.

It is easy to see that SUF-CMA security implies UF-CMA security. Furthermore,

any UF-CMA secure scheme may be amended by appending a redundant bit to its

tags, and letting the verification algorithm ignore this bit. This simple alteration

renders the scheme insecure in the SUF-CMA sense without detriment to its UF-

CMA security, thereby yielding a (conditional) separation showing that SUF-CMA

is a strictly stronger notion. However if we restrict ourselves to MACs, the two

22

2.3 Encryption Schemes

notions become equivalent. The separation we just sketched does not apply in the

case of MACs. The verification procedure in the amended scheme does not conform

to the MAC definition, and hence it does not qualify as a MAC. One further point to

note about the above definitions is that we allowed the adversary to make multiple

verification queries. In the cryptographic literature analogous notions can be found

where the adversary is allowed only one verification query. It can be shown [13] that

for the case of plain unforgeability, the multiple-query variant is strictly stronger,

whereas for strong unforgeability the two variants are equivalent (up to a factor equal

to the number of verification queries that the adversary is allowed). In recent work

[36], Dodis, Kiltz, Pietrzak, and Wichs present a simple and efficient transformation

yielding a UF-CMA secure message authentication scheme from any scheme that is

unforgeable under a single verification query. Again, for the restricted case of MACs,

security is not qualitatively affected by this variation in the definition.

We conclude this section on message authentication by pointing out a well-known

connection with pseudorandom functions. A PRF with a sufficiently large codomain

trivially yields a UF-CMA MAC, by letting the tagging algorithm be the PRF and

defining the key-generation algorithm to sample a key for the PRF uniformly at

random. This observation provides a pragmatic approach for realising MACs in

practice; i.e. by extending readily-available PRFs (such as block ciphers) to accom-

modate the required domain. In fact many MAC designs like CMAC [91], XOR-

MAC [14], and HMAC [10] can be viewed more simply as techniques for constructing

variable-input-length PRFs from fixed-input-length PRFs.

2.3 Encryption Schemes

2.3.1 Syntax

A symmetric encryption scheme SE = (K, E ,D) is a triple of algorithms with an

associated message space M ⊆ {0, 1}∗ and ciphertext space C ⊆ {0, 1}∗. The

randomised key-generation algorithm K takes no input and returns a secret key K,

an initial encryption state σ0, and an initial decryption state %0. We will sometimes

abuse notation and regard K as a set of keys representing the key space. The

randomised and stateful encryption algorithm E : K × M × Σ → C × Σ takes

23

2.3 Encryption Schemes

as input the secret key K ∈ K, a plaintext m ∈ M, and the current encryption

state σ ∈ Σ, and returns a ciphertext in C together with an updated state. The

deterministic and stateful decryption algorithm D : K × C × Σ → (M ∪ {⊥}) × Σ

takes as input the secret key K, a ciphertext c ∈ C, and the current decryption state

% to return the corresponding plaintext m ∈M or the special symbol ⊥ (indicating

that the ciphertext is invalid) and an updated state.

For any ` ∈ N and any m = [m1, . . . ,m`] ∈ M`, we write (c, σ) ← EK(m, σ0) as

shorthand for (c1, σ1)← EK(m1, σ0), (c2, σ2)← EK(m2, σ1), . . . (c`, σ`)← EK(m`, σ`−1),

where c = [c1, . . . , c`] and σ = σ`. Similarly we use (m′, %) ← DK(c, %0) to denote

the analogous process for decryption.

For any symmetric encryption scheme we require that for all (K,σ0, %0) that can

be output by K, all ` ∈ N, and all m ∈ M`, it hold (with probability 1) that if

(c, σ)← EK(m, σ0) and (m′, %)← DK(c, %0), then m′ = m.

The syntax for symmetric encryption that is presented here differs slightly from

that which is commonly adopted in cryptographic literature. Our syntax defines

both encryption and decryption to be stateful algorithms. Nonetheless, this does

not result in any loss of generality. Both encryption and decryption can be made

stateless by having K to always return the empty string for the corresponding initial

state, and let the algorithm ignore (i.e. never update) the state. In later chapters we

will consider practical aspects that will require further adjustments to the syntax of

symmetric encryption schemes. In [85] Rogaway introduced a variation in the syntax

in which encryption and decryption take a nonce as an additional input. While the

nonce-based approach is certainly relevant to practice-oriented cryptography, it is

somewhat orthogonal to the issues addressed in this thesis. For simplicity’s sake we

decided not to incorporate this approach in our analysis, yet it should be possible

to extend most of our work to that setting.

2.3.2 Notions of Confidentiality

Bellare, Desai, Jokipii, and Rogaway were the first to consider formal notions of

confidentiality for symmetric encryption [12]. They considered four candidate defi-

24

2.3 Encryption Schemes

nitions, which they classified as Find-then-Guess Indistinguishability, Left-or-Right

Indistinguishability, Real-or-Random Indistinguishability, and Semantic Security.

Each notion is defined through an experiment. Find-then-Guess Indistinguisha-

bility is a straightforward adaptation of the well-known IND-CPA notion from the

public-key setting, first introduced under the name ‘polynomial security’ in [50].

Here a two-stage experiment is defined, where in the first stage – the ‘find’ stage

the adversary endeavours to come up with a pair of equal-length messages whose

encryptions it wants to try to tell apart. In the ‘guess’ stage a message from this

pair is chosen at random, and its encryption called the challenge ciphertext is given

to the adversary. The adversary wins if it can tell which message is concealed in

the challenge ciphertext. An encryption scheme is deemed secure if no adversary

consuming reasonable resources can win significantly more than half the time.

Left-or-right indistinguishability is defined through a single-stage experiment which

starts by sampling a bit uniformly at random. The adversary is then given access to

a left-or-right oracle which, when queried on a pair of equal-length messages, returns

the encryption of one of them. The message to be encrypted is chosen according

to the bit sampled at the beginning of the experiment. The experiment ends when

the adversary outputs a guess of the bit. Similarly as before, an encryption scheme

is deemed secure if no adversary consuming reasonable resources can guess the bit

significantly more than half the time. Real-or-random indistinguishability is defined

similarly, except that the adversary is instead given access to a real-or-random oracle,

which takes as input a single message, and according to the value of the sampled

bit, either returns an encryption of the input or an encryption of an equal-length

message sampled uniformly at random. Semantic security is also an adaptation

to the symmetric setting of the notion introduced in [50] under the same name.

All of these notions can be strengthened to capture chosen-ciphertext attacks by

additionally giving the adversary access to a decryption oracle and prohibiting him

from making ‘trivial-win’ queries.

The authors of [12] also establish relations among these four security notions. They

show that left-or-right and real-or-random indistinguishability are equivalent up to

a factor of two in the corresponding advantages. Similarly find-then-guess indistin-

guishability and semantic security are shown to be equivalent up to a constant factor

of two. Finally they show that find-then-guess and left-or-right indistinguishabil-

25

2.3 Encryption Schemes

ity are also equivalent, but the reduction from left-or-right indistinguishability to

find-then-guess indistinguishability incurs a loss in the advantage by a factor equal

to the number of queries made by the adversary to the left-or-right oracle. Fur-

thermore they present a separation showing that this reduction is tight, and hence

this ‘loss in security’ is inevitable. The above relations apply equally to the chosen-

ciphertext-attack variants of the notions. From the above analysis, left-or-right and

real-or-random indistinguishability emerge as the preferred security notions, since

they are quantitatively stronger. We now present in more detail definitions for

IND-CPA and IND-CCA security in terms of left-or-right indistinguishability.

Definition 2.4: IND-CPA and IND-CCA. Let SE = (K, E ,D) be a sym-

metric encryption scheme. For an adversary A and a bit b, define experiments

Expind-cpa-b
SE (A) and Expind-cca-b

SE (A) as shown in Figure 2.2. Both experiments

start by calling K to generate a key K and initialise the states. The adversary A is

then given access to a left-or-right encryption oracle LoR(·), and in the latter exper-

iment it is additionally given a decryption oracle Dec(·). No restriction is imposed

on the adversary’s queries, rather if it queries a pair of messages of unequal length

to LoR(·), or if it queries a ciphertext to Dec(·) previously returned by LoR(·), the

 symbol is returned.

In both experiments, the adversary’s goal is to output a bit b′ as its guess of the

challenge bit b, and the experiment returns b′ as well. The corresponding advantages

of an adversary A are given by:

Advind-cpa
SE (A) = Pr

[
Expind-cpa-1

SE (A) = 1
]
− Pr

[
Expind-cpa-0

SE (A) = 1
]
,

Advind-cca
SE (A) = Pr

[
Expind-cca-1

SE (A) = 1
]
− Pr

[
Expind-cca-0

SE (A) = 1
]
.

The scheme SE is said to be IND-CPA (or IND-CCA) secure, if for every adversary A
with reasonable resources its advantage Advind-cpa

SE (A) (respectively Advind-cca
SE (A))

is small.

Arguably, out of the four formulations of IND-CPA and IND-CCA security, semantic

26

2.3 Encryption Schemes

Expind-cpa-b
SE (A) Expind-cca-b

SE (A)

(K,σ, %)← K
i← 0, C← ()

b′ ← ALoR(·) b′ ← ALoR(·),Dec(·)

return b′

LoR((m0,m1))

if |m0| 6= |m1| then return
(c, σ)← EK(mb, σ)
i← i+ 1, Ci ← c
return c

Dec(c)

(m, %)← DK(c, %)
if c ∈ C then m←
return m

Figure 2.2: Experiments to define IND-CPA and IND-CCA security. For IND-CPA
the boxed code is excluded, whereas for IND-CCA the boxed code replaces the code
adjacent to it.

security is intuitively the most satisfactory notion of confidentiality. It conveys the

most clear intuition that for an encryption scheme to be secure, it should not leak

any partial information about the plaintext. This intuition is not immediately clear

from the other formulations. On the other hand, the other formulations tend to be

easier to use in security proofs. This further highlights the utility of the equivalence

relations from [12], in that they allow us to get the best of both worlds. Further-

more, the fact that different notions capturing seemingly different intuitive notions

of confidentiality turn out to be equivalent is often considered a good indication that

we have converged to a good security notion.

Symmetric encryption schemes that satisfy left-or-right indistinguishability (IND),

often satisfy a stronger notion of indistinguishability known as indistinguishability

from random bits (IND$). This notion was put forward by Rogaway in [85]. Under

this notion a scheme is secure if ciphertexts cannot be distinguished from random

strings of the same length. Interestingly, for typical schemes, proving IND$ security

often turns out to be slightly simpler than proving IND security. Note however

27

2.3 Encryption Schemes

that IND$ implies IND only as long as the distribution of ciphertext lengths (for

the scheme under consideration) depends only on the message length (and not the

message itself). Analogous definitions for chosen-plaintext and chosen-ciphertext

security are defined as follows:

Definition 2.5: IND$-CPA and IND$-CCA. Let SE = (K, E ,D) be a sym-

metric encryption scheme. For an adversary A and a bit b, define experiments

Expind$-cpa-b
SE (A) and Expind$-cca-b

SE (A) as shown in Figure 2.3. Both experiments

start by calling K to generate a key K and initialise the states. The adversary A
is then given access to a special encryption oracle Enc$(·). If b = 1 the oracle re-

turns the encrypted message, otherwise it returns a uniformly-random bit-string of

the same length as the encrypted message. In the latter experiment it is addition-

ally given access to a decryption oracle Dec(·). Trivial-win conditions are avoided

by having the decryption oracle return in response to any ciphertext that was

previously output by the encryption oracle.

In both experiments, the adversary’s goal is to output a bit b′ as its guess of the

challenge bit b, and the experiment returns b′ as well. The corresponding advantages

of an adversary A are given by:

Advind$-cpa
SE (A) = Pr

[
Expind$-cpa-1

SE (A) = 1
]
− Pr

[
Expind$-cpa-0

SE (A) = 1
]
,

Advind$-cca
SE (A) = Pr

[
Expind$-cca-1

SE (A) = 1
]
− Pr

[
Expind$-cca-0

SE (A) = 1
]
.

The scheme SE is said to be IND$-CPA (or IND$-CCA) secure, if for every ad-

versary A with reasonable resources its advantage Advind$-cpa
SE (A) (respectively

Advind$-cca
SE (A)) is small.

2.3.3 Modes of Operation

We now describe three ubiquitous symmetric encryption schemes that are based on

block ciphers. These are also known as modes of operation, since they are effectively

28

2.3 Encryption Schemes

Expind$-cpa-b
SE (A) Expind$-cca-b

SE (A)

(K,σ, %)← K
i← 0, C← ()

b′ ← AEnc$(·) b′ ← AEnc$(·),Dec(·)

return b′

Enc$(m)

(c, σ)← EK(m,σ)

if b = 0 then c←$ {0, 1}|c|
i← i+ 1, Ci ← c
return c

Dec(c)

(m, %)← DK(c, %)
if c ∈ C then m←
return m

Figure 2.3: Experiments to define IND$-CPA and IND$-CCA security. For IND$-CPA
the boxed code is excluded, whereas for IND$-CCA the boxed code replaces the code
adjacent to it.

ways of operating a block cipher for encrypting data. We assume, in all three cases,

that the message space contains only messages whose length is an integer multiple

of the block length. The simplest mode of operation is the Electronic Code Book

(ECB) mode, in which a message is split into blocks, each block is then fed into the

block cipher, and the outputs are concatenated. Note that this mode of operation is

deterministic, and consequently it cannot be IND-CPA secure irrespective of which

block cipher is used.

A more secure mode of operation is Counter mode. In this mode, the input to the

block cipher is a counter that is incremented after each block cipher call. The outputs

of the block cipher are then concatenated and the resulting string is XORed to the

plaintext in a fashion similar to the one-time pad. We here present two variants

of this mode, of which one is stateful and the other randomised. For any block

cipher E we denote Stateful Counter mode by CTR[E], and Randomised Counter

mode by CTR$[E]. Namely in the stateful variant the counter is maintained as

the encryption state, whereas in the randomised variant a random initial counter is

29

2.3 Encryption Schemes

CTR-K

K ←$ {0, 1}k
return (K, 0, ε)

CTR-EK(m,σ)

c0 ← σ
for i = 1 to |m|/n

xi ← m[1 + (i− 1)n, in]
ci ← EK(c0 + i)⊕ xi

c← c0 ‖ . . . ‖ c|m|/n
return (c, σ + i)

CTR-DK(c, %)

y0 ← c[1, n]
for i = 1 to |c|/n− 1

yi ← c[1 + in, (i+ 1)n]
mi ← yi ⊕ EK(y0 + i)

m← m1 ‖ . . . ‖ m|c|/n−1

return (m, %)

Figure 2.4: Scheme CTR[E] from a block cipher E : {0, 1}k × {0, 1}n → {0, 1}n.

CTR$-K

K ←$ {0, 1}k
return (K, ε, ε)

CTR$-EK(m,σ)

c0 ←$ {0, 1}n
for i = 1 to |m|/n

xi ← m[1 + (i− 1)n, in]
ci ← EK(c0 + i)⊕ xi

c← c0 ‖ . . . ‖ c|m|/n
return (c, σ)

CTR$-DK(c, %)

y0 ← c[1, n]
for i = 1 to |c|/n− 1

yi ← c[1 + in, (i+ 1)n]
mi ← yi ⊕ EK(y0 + i)

m← m1 ‖ . . . ‖ m|c|/n−1

return (m, %)

Figure 2.5: Scheme CTR$[E] from a block cipher E : {0, 1}k × {0, 1}n → {0, 1}n.

sampled uniformly for each ciphertext. In either case the initial counter is prepended

to the ciphertext. The two modes are specified in Figures 2.4 and 2.5.

A third variant could be defined in which decryption is also stateful. Here the

decryption algorithm maintains its own copy of the counter, and no initial counter

value is prepended to the ciphertext. Note that all three variants can be easily

adapted to support messages of arbitrary length. This is achieved by trimming

the redundant part from the last block cipher output, such that the concatenated

outputs are of the same length as the message.

The third mode of operation that we consider is Cipher Block Chaining (CBC)

mode. In this scheme encryption is stateless and randomised, and decryption is

also stateless. In CBC mode each plaintext block is first XORed with the previous

ciphertext block, and the resulting block is then fed into the block cipher to yield the

corresponding ciphertext block. The first ciphertext block is computed by XORing

the plaintext block with an initial vector, sampled uniformly at random, and the

30

2.3 Encryption Schemes

result is then fed into the block cipher. This initial vector is prepended to the

ciphertext so that the receiver can decrypt successfully. Decryption is the reverse

process, each ciphertext block is inverted using the inverse block cipher function and

the result is XORed to the preceding ciphertext block (or initial vector) to yield the

corresponding plaintext block. In order to encrypt messages of arbitrary length, a

padding scheme is normally used to extend the message length to an integer multiple

of the block length. The CBC[E] scheme obtained from a block cipher E is specified

in Figure 2.6.

The Counter mode variants and CBC mode were proven secure in [12]. Namely

CTR[E] and CTR$[E] were proven to be IND-CPA secure under the assumption that

E is a pseudorandom function, while CBC[E] was shown to be IND-CPA secure

under the assumption that E is a pseudorandom permutation. All three schemes

suffer from some form of malleability, and as a consequence they cannot meet the

stronger IND-CCA security notion. For both Counter mode variants, flipping a bit

in the ciphertext results in the corresponding plaintext bit being flipped. Similarly

in CBC mode, flipping a bit in a ciphertext block results in the corresponding bit

of the next plaintext block being flipped. In addition if the block cipher is a PRP,

we can expect that the current plaintext block will be randomised if any of the

corresponding ciphertext-block bits are flipped. Thus an adversary can predictably

alter the contents of a plaintext block at the expense of ‘garbling’ the preceding

plaintext block. However the first block can be manipulated by flipping bits in the

initial vector without garbling any other plaintext block. This malleability can be

exploited in the IND-CCA experiment as follows. The adversary submits a message

pair (0n, 1n) to the left-or-right oracle and receives in return a ciphertext c. Using

the techniques just described, it produces a ciphertext c′ that corresponds to m with

its first bit flipped, where m is the message contained in c. It then submits c′ to

the decryption oracle and if the returned message is 1‖0n−1 it outputs 0, else if it

is 0‖1n−1 it outputs 1. Thereby the adversary wins the IND-CCA experiment with

probability 1. In the coming chapters we will make use of this malleability to mount

plaintext-recovery attacks on practical cryptosystems.

31

2.4 Authenticated Encryption

CBC-K

K ←$ {0, 1}k
return (K, ε, ε)

CBC-EK(m,σ)

c0 ←$ {0, 1}n
for i = 1 to |m|/n

xi ← m[1 + (i− 1)n, in]
ci ← EK(ci−1 ⊕ xi)

c← c0 ‖ . . . ‖ c|m|/n
return (c, σ)

CBC-DK(c, %)

y0 ← c[1, n]
for i = 1 to |c|/n− 1

yi ← c[1 + in, (i+ 1)n]

mi ← yi−1 ⊕ E−1
K (yi)

m← m1 ‖ . . . ‖ m|c|/n−1

return (m, %)

Figure 2.6: Scheme CBC[E] from a block cipher E : {0, 1}k × {0, 1}n → {0, 1}n.

2.4 Authenticated Encryption

Until now we looked at message authenticity and message confidentiality as sep-

arate goals. In practice however, when two parties communicate over a network,

both goals are desirable. Authenticated encryption refers to schemes which simulta-

neously achieve both message confidentiality and message authenticity. Historically

the lack of authenticated encryption has been a source of problems for practical

cryptosystems. A number of proposed schemes claimed to meet this goal have re-

sulted in disastrous failures. For instance in early drafts of the IPsec protocol suite

[4] it was claimed that schemes such as CBC mode provide both confidentiality and

integrity. This misconception was in part due to a lack of formal security definitions,

where message integrity and message authenticity (in the symmetric setting) were

perceived to be different [84]. Another popular example is that of the WEP cryp-

tosystem in the IEEE 802.11 standard, where a Cyclic Redundancy Checksum was

combined with a stream cipher in an attempt to provide authenticated encryption.

Both cases were later shown to be inadequate for message authenticity as well as

message privacy [20, 29, 25]. These two examples (together with many others) raise a

number of issues that are worth pointing out. Firstly, they highlight the importance

of the provable security approach to cryptographic practice, as opposed to claims of

security (as in [4]) based solely on intuition. Secondly they show that, at least at the

time, it was not at all obvious how to construct authenticated encryptions schemes.

Thirdly they also show that practical cryptographic applications often necessitate

stronger confidentiality than that guaranteed by IND-CPA security.

Bellare and Namprempre [17] were amongst the first to provide a formal analysis

32

2.4 Authenticated Encryption

of authenticated encryption. We now summarise some of their results. An au-

thenticated encryption scheme is syntactically equivalent to a symmetric encryption

scheme; its characterisation derives instead from the additional property that it si-

multaneously meets some appropriate notions of message confidentiality and message

authenticity. Bellare and Namprempre identify IND-CCA security as the appropriate

confidentiality notion, and define message authenticity in terms of the integrity of

plaintexts (INT-PTXT) notion. They also consider a closely-related notion called

integrity of ciphertexts (INT-CTXT). We now define both.

Definition 2.6: INT-PTXT and INT-CTXT. Let SE = (K, E ,D) be a sym-

metric encryption scheme. For an adversaryA define the experiments Expint-ptxt
SE (A)

and Expint-ctxt
SE (A) as shown in Figure 2.7. Both experiments start by calling K to

generate a key K and initialise the states. The adversary A is then given access to

an encryption oracle Enc(·), and a try oracle Try(·). When queried on a ciphertext,

the try oracle returns whether that ciphertext is valid or not.

In the INT-PTXT experiment the adversary wins if it submits to the try oracle a

valid ciphertext that does not correspond to a plaintext previously queried to the

encryption oracle. In the INT-CTXT experiment however, the adversary wins if it

submits to the try oracle a valid ciphertext not previously returned by the encryption

oracle. For each experiment we define the advantage of an adversary A as:

Advint-ptxt
SE (A) = Pr

[
Expint-ptxt

SE (A) = 1
]
,

Advint-ctxt
SE (A) = Pr

[
Expint-ctxt

SE (A) = 1
]
.

The scheme SE is said to be INT-PTXT (or INT-CTXT) secure, if for every adversary

A with reasonable resources its advantage Advint-ptxt
SE (A) (respectively Advint-ctxt

SE (A))

is small.

It is easy to see that for any symmetric encryption scheme, if it satisfies integrity of ci-

phertexts it will also satisfy integrity of plaintexts. More simply we say that integrity

of ciphertexts implies integrity of plaintexts, which we denote by INT-CTXT −→
INT-PTXT. Integrity of plaintexts is perhaps the more natural security require-

ment, but integrity of ciphertexts is interesting, at least in part, due to the following

33

2.4 Authenticated Encryption

Expint-ptxt
SE (A) Expint-ctxt

SE (A)

(K,σ, %)← K
win← 0, L← ∅
AEnc(·),Try(·)

return win

Enc(m)

(c, σ)← EK(m,σ)

L← L ∪m L← L ∪ c
return c

Try(c)

(m, %)← DK(c, %)

if m 6∈ L and m 6=⊥ if c 6∈ L and m 6=⊥
then win← 1

if m 6=⊥ then m←
return m

Figure 2.7: Experiments to define INT-PTXT and INT-CTXT security. For INT-
PTXT the boxed code is excluded, whereas for INT-CTXT the boxed code replaces
the code adjacent to it.

result from [17].

Theorem 2.2: IND-CPA ∧ INT-CTXT −→ IND-CCA. Let SE = (K, E ,D) be a

symmetric encryption scheme. For any IND-CCA adversary Acca there exist adver-

saries Acpa and Aint, comsuming similar resources to Acca, such that:

Advind-cca
SE (Acca) ≤ Advind-cpa

SE (Acpa) + 2 ·Advint-ctxt
SE (Aint) . (2.1)

Informally, the above theorem states that weak confidentiality (IND-CPA) together

with ciphertext integrity, yields strong confidentiality (IND-CCA). Thus in order to

obtain an authenticated encryption scheme it suffices to construct a scheme that

is both IND-CPA secure and INT-CTXT secure. Bellare and Namprempre go on to

show, by means of a separation, that an analogous implication where ciphertext

integrity is replaced with plaintext integrity does not hold. They also show that

IND-CCA does not guarantee INT-PTXT, and hence the converse of Theorem 2.2

34

2.4 Authenticated Encryption

does not hold either.

We have not yet given any example of an authenticated encryption scheme. A

natural attempt at constructing one would be to somehow combine a message au-

thentication scheme with a symmetric encryption scheme. This is known as generic

composition. Three natural ways of combining the two primitives emerge, and as we

shall see in the next chapter, all three have been deployed in practical cryptosystems.

These are: Authenticate-then-Encrypt (AtE), Encrypt-then-Authenticate (EtA),

and Encrypt-and-Authenticate (E&A). They are informally defined as follows:

Authenticate-then-Encrypt (AtE): The sender computes a tag on the plain-

text, the tag is appended to the plaintext, and the resulting string is then

encrypted. The receiver decrypts the ciphertext, recovers the tag and the

plaintext, and if the tag verifies correctly it returns the plaintext, otherwise it

returns ⊥.

Encrypt-then-Authenticate (EtA): The sender encrypts the plaintext, com-

putes a tag on the ciphertext, and appends the tag to the ciphertext. The

receiver recovers the tag and the ciphertext. If the tag verifies correctly, the

receiver goes on to decrypt the ciphertext and returns the plaintext, otherwise

it returns ⊥.

Encrypt-and-Authenticate (E&A): The sender computes a tag on the plain-

text. It then encrypts the plaintext, and appends the tag to the ciphertext.

The receiver recovers the tag and the ciphertext, and decrypts the ciphertext.

If the tag on the resulting plaintext verifies correctly the plaintext is returned,

otherwise it returns ⊥.

Bellare and Nampremrpre [17] analysed these three compositions and showed that,

for any IND-CPA secure encryption scheme and any SUF-CMA message authentica-

tion scheme, only encrypt-then-authenticate guarantees that the resulting scheme

will be IND-CCA secure. Moreover, if the message authentication scheme is SUF-

CMA secure it follows rather trivially that the EtA composition is INT-CTXT se-

cure. Thus for any two primitives that satisfy these basic security requirements,

EtA always yields an authenticated encryption scheme. Of course this does not

35

2.4 Authenticated Encryption

mean that the other two compositions can never yield an authenticated encryption

scheme; rather it says that the security mean that the other two compositions can

never yield an authenticated encryption scheme; rather it says that the security of

these compositions does not immediately follow from the IND-CPA and SUF-CMA

security of the underlying primitives. In the case of encrypt-and-authenticate, the

message authentication scheme may leak information about the plaintext and yet

be SUF-CMA secure. Hence the composed scheme may not even be IND-CPA secure.

As regards authenticate-then-encrypt, the encryption scheme may be susceptible to

some form of malleability which allows an attacker to maul a ciphertext without

altering the underlying plaintext and tag. Consequently the resulting composition

cannot be IND-CCA secure. This intuitive argument can be formalised to yield a

counterexample showing that AtE (and equally to E&A) does not guarantee IND-

CCA security in general, as well as to prove the aforementioned separation, namely

IND-CPA ∧ INT-PTXT 6−→ IND-CCA.

Following the work of Bellare and Namprempre, a fair amount of research has been

dedicated to various aspects of authenticated encryption. In particular, there has

been an effort to construct dedicated schemes whose performance surpasses that of

generic composition schemes. Examples of dedicated schemes are Integrity-Aware

CBC (IACBC) [59], Counter mode with CBC-MAC (CCM) [97], Galois Counter

Mode (GCM) [75], and Offset CodeBook (OCB) [88]. The design specifics of such

dedicated schemes are beyond the scope of this thesis and we do not discuss them

any further.

We conclude this section by presenting a security notion, put forward by Shrimpton

[90], that elegantly combines IND-CPA and INT-CTXT into a single notion. This

notion is known as IND-CCA3 or simply as AE security.

Definition 2.7: IND-CCA3. Let SE = (K, E ,D) be a symmetric encryption

scheme. For an adversary A, and a bit b, define the experiment Expind-cca3-b
SE (A)

as shown in Figure 2.8. First K is called to generate a key K, an initial encryption

state σ, and an initial decryption state %. The adversary A is then given access to

a special encryption oracle EncR(·) and a special decryption oracle Dec∅(·). When

b = 1 both oracles behave as normal encryption and decryption oracles. Contrarily,

if b = 0 then EncR(·) will return the encryption of a random string of the same length

36

2.4 Authenticated Encryption

Expind-cca3-b
SE (A)

(K,σ, %)← K
i← 0, C← ()

b′ ← AEncR(·),Dec∅(·)

return (b′)

EncR(m)

if b = 0 then m←$ {0, 1}|m|
(c, σ)← EK(m,σ)
i← i+ 1, Ci ← c
return c

Dec∅(c)

(m, %)← DK(c, %)
if b = 0 then m←⊥
if c ∈ C then m←
return m

Figure 2.8: Experiment to define IND-CCA3 security.

as the message, and Dec∅(·) will always return ⊥ (unless the queried ciphertext was

output by EncR(·), in which case it will return).

The adversary’s goal is to output a bit b′ as its guess of the challenge bit b, and the

experiment returns b′ as well. The advantage of the adversary A is defined as:

Advind-cca3
SE (A) = Pr

[
Expind-cca3-1

SE (A) = 1
]
− Pr

[
Expind-cca3-0

SE (A) = 1
]
.

The scheme SE is said to be IND-CCA3 secure, if for every adversary A with rea-

sonable resources its advantage Advind$-cca3
SE (A) is small.

For a proof of the equivalence between IND-CCA3 and IND-CPA ∧ INT-CTXT the

reader is referred to [90]. Note that the IND-CCA3 notion is formulated using real-

or-random indistinguishability. An analogous IND$-CCA3 notion which combines

IND$-CPA and INT-CTXT, can be similarly defined by replacing the EncR(·) oracle

with the Enc$(·) oracle from Definition 2.5.

37

2.5 Stateful Security

2.5 Stateful Security

A main security concern in practical cryptosystems is that of replay and re-ordering

attacks. These are attacks characterised by an adversary’s ability to replay and

to re-order ciphertexts during their transmission. Consider for instance an online

banking application where a message may constitute a payment instruction. By

replaying the ciphertext that corresponds to a payment instruction, an adversary

may be able to force the payment to occur multiple times. Alternatively consider the

case where for transmission purposes messages need to be split into smaller message

segments, which are then encrypted separately. By reordering the corresponding

ciphertexts an adversary may be able to forge new reconstructed messages at the

receiver side. These examples obviously constitute a breach of integrity, yet neither

constitutes an attack under the notions of integrity that we have presented so far.

The ability to replay and re-order ciphertext can also impact confidentiality. Con-

sider again the last example where an application transmits application messages

in smaller segments over a network, and each message segment is encrypted sepa-

rately. Further assume that the application leaks (by means of some side-channel)

to the adversary a small amount of information about the received message. Now

by re-ordering and replaying ciphertexts, an adversary may be able to inject new

application messages that bear some relation to the original application message,

and thereby amplify the amount of information leaked through the side-channel. Of

course the cryptosystem cannot prevent the upper-layer application from leaking

information to the adversary. However it can ensure for instance that replayed and

re-ordered ciphertexts do not decrypt successfully and hence prevent further leakage

of information from adversarially manipulated traffic. Note that IND-CCA secu-

rity does not capture these security goals, and consequently it does not guarantee

security against replay and re-ordering attacks.

As a tool in their analysis of SSH [16], Bellare, Kohno, and Namprempre extended

chosen-ciphertext security and integrity of ciphertexts to additionally protect against

replay and re-ordering of ciphertext. Their security notions, IND-sfCCA and INT-

sfCTXT, can be seen as ‘strengthened’ variations of their standard counterparts.

That is IND-sfCCA −→ IND-CCA and INT-sfCTXT −→ INT-CTXT. These definitions

consider whether the adversary’s decryption queries are in-sync with its encryption

38

2.5 Stateful Security

queries. Namely, as long as the sequence of ciphertexts queried for decryption (or

to the Try oracle) is a prefix of the ciphertext sequence returned by the encryption

(or left-or-right) oracle, the decryption queries are said to be in-sync. Alternatively

as soon as a decryption query is made such that this relation no longer holds, the

decryption queries are said to have become out-of-sync. Intuitively this can inter-

preted to say that as long as the decryption queries are in-sync the adversary is

acting passively. Conversely if the decryption queries have become out-of-sync, it

means that the adversary has tampered with the traffic flow between the sender

and the receiver. IND-sfCCA is then defined analogously to IND-CCA except that

the output of the decryption algorithm is only returned once the decryption queries

have become out-of-sync. Note that this is less restrictive on the adversary than the

IND-CCA restriction that ciphertexts returned by the left-or-right oracle cannot be

queried to the decryption oracle so IND-sfCCA is a stronger security notion. Simi-

larly in INT-sfCTXT any out-of-sync ciphertext that decrypts correctly is considered

a ciphertext forgery. Thus, and in contrast to INT-CTXT, a replay of a ciphertext

previously output by the encryption oracle can result in a ‘win’ for the adversary.

We now define more formally the two notions.

Definition 2.8: INT-sfCTXT. Let SE = (K, E ,D) be a symmetric encryption

scheme. For an adversary A define the experiment Expint-sfctxt
SE (A) as shown in

Figure 2.9. The experiment starts by calling K to generate a key K and initialise

the states. An adversary A is then given access to an encryption oracle Enc(·), and

a stateful try oracle sfTry(·). When queried on a ciphertext, the try oracle returns

 if the queried ciphertext is valid or it is in-sync, and returns ⊥ if it is invalid.

The adversary’s goal is to make a valid out-of-sync try query, and its advantage is

defined as:

Advint-sfctxt
SE (A) = Pr

[
Expint-sfctxt

SE (A) = 1
]
.

The scheme SE is said to be INT-sfCTXT secure, if for every adversary A consuming

reasonable resources, its advantage Advint-sfctxt
SE (A) is small.

Definition 2.9: IND-sfCCA. Let SE = (K, E ,D) be a symmetric encryption

scheme. For an adversary A and a bit b, define the experiment Expind-sfcca-b
SE (A)

as shown in Figure 2.9. The experiment starts by calling K to generate a key K

39

2.5 Stateful Security

Expint-sfctxt
SE (A)

(K,σ, %)← K
i← 0, j ← 0
C← (), sync← 1,win← 0

AEnc(·),sfTry(·)

return win

Enc(m)

(c, σ)← EK(m,σ)
i← i+ 1, Ci ← c
return c

sfTry(c)

j ← j + 1, (m, %)← DK(c, %)
if j > i or c 6= Cj

then sync← 0
if sync = 0 and m 6=⊥

then win← 1
if m 6=⊥ then m←
return m

Expind-sfcca-b
SE (A)

(K,σ, %)← K
i← 0, j ← 0
C← (), sync← 1

b′ ← ALoR(·),sfDec(·)

return b′

LoR((m0,m1))

if |m0| 6= |m1| then return
(c, σ)← EK(mb, σ)
i← i+ 1, Ci ← c
return c

sfDec(c)

j ← j + 1, (m, %)← DK(c, %)
if j > i or c 6= Cj then sync← 0
if sync = 1 then m←
return m

Figure 2.9: Experiments to define INT-sfCTXT and IND-sfCCA security.

and initialise the states. The adversary A is then given access to a left-or-right

encryption oracle LoR(·), and a stateful decryption oracle sfDec(·). This decryption

oracle returns the decrypted ciphertexts only for out-of-sync queries, and returns

otherwise. The adversary’s goal is to output a bit b′, as its guess of the challenge bit

b, and the experiment returns b′ as well. We define the advantage of an adversary

A as:

Advind-sfcca
SE (A) = Pr

[
Expind-sfcca-1

SE (A) = 1
]
− Pr

[
Expind-sfcca-0

SE (A) = 1
]
.

The scheme SE is said to be IND-sfCCA secure, if for every adversary A with rea-

sonable resources its advantage Advind-sfcca
SE (A) is small.

For a scheme to meet either of these notions, its decryption algorithm must be

stateful. The ‘sf’ in the notion designations, which stands for ‘stateful’, can be

attributed to the fact that the decryption and try oracles in the corresponding

40

2.5 Stateful Security

experiments are themselves stateful. A further contribution from the work of Bellare,

Kohno, and Namprempre is to extend Theorem 2.2 to the stateful setting. This is

stated formally in the following theorem.

Theorem 2.3: IND-CPA ∧ INT-sfCTXT −→ IND-sfCCA. Let SE = (K, E ,D) be

a symmetric encryption scheme. For any IND-sfCCA adversary Asfcca there exist

adversaries Acpa and Aint consuming similar resources to Acca such that:

Advind-sfcca
SE (Asfcca) ≤ Advind-cpa

SE (Acpa) + 2 ·Advint-sfctxt
SE (Aint) . (2.2)

41

Chapter 3

Secure Network Protocols

Contents

3.1 The TCP/IP Protocol Suite 42

3.1.1 IP . 43

3.1.2 TCP and UDP . 46

3.2 Three Ubiquitous Security Protocols 48

3.2.1 TLS . 48

3.2.2 SSH . 50

3.2.3 IPsec . 52

3.3 Related Theoretical Analysis 57

3.4 Padding Oracle Attacks . 60

3.5 A Ciphertext Fragmentation Attack on SSH 62

This chapter introduces the necessary background on secure network protocols. We

start with an overview of TCP/IP and a description of the three most used secure

network protocols. We then look at some of the previous works that analysed the

security of these protocols.

3.1 The TCP/IP Protocol Suite

At a very high level, the Internet can perhaps be best described as a network of

computer networks. At its core is the TCP/IP protocol suite, which allows millions

of computer networks based on different networking technologies to operate as one

big computer network. Distinct computer networks are connected by means of

gateways. A gateway is a special machine that has a physical network interface

on more than one network, and can relay data from one network to the other. The

42

3.1 The TCP/IP Protocol Suite

Internet Protocol (IP) is mainly responsible for relaying data across physical network

boundaries. Central to its operation is the IP addressing scheme, which organises

in a neat and hierarchical manner all the machines on the Internet. In essence

every machine on the Internet is assigned an IP address that uniquely identifies

the machine and its location. An IP address is structured hierarchically so that

address prefixes identify sets of machines (i.e. logical networks) in which the machine

is contained. For each of these logical networks there will be a router which is

responsible for routing traffic between that set of machines and the rest of the

Internet. Every logical network can in turn be split into smaller logical subnetworks

for which other routers will be responsible. Internet data will commonly travel

through several routers until it reaches its intended recipient. Thus the task of

delivering data from one end to the other is distributed among several routers, each

of which needs to have only a ‘partial view’ of the Internet.

3.1.1 IP

Data over the Internet travels in the form of IP packets. In order to travel within any

physical network an IP packet must be encapsulated in a data frame that conforms

to the link-layer technology of that network. When forwarding IP packets from

one network to another, the gateway takes care of stripping off the old frame and

encapsulating the IP packet in a new frame. An IP packet consists of an IP header

followed by the data payload. Figure 3.1 depicts the format of an IP packet in more

detail. Both the IP header and the data payload can vary in length as necessary.

The Header Length field (HLEN) indicates the IP header length in 32-bit words

whereas the Total Length field indicates the combined length of the payload and IP

header in bytes. The source IP address field indicates the IP address of the machine

from which the packet originates. Similarly the destination IP address field indicates

the intended recipient of the IP packet, and is used by the intermediate routers to

successfully deliver the packet. The first four bits of the header indicate the version

of the IP protocol that was used to create the packet. This is the first field that

any IP software will inspect in order to determine how to interpret the rest of the

packet. To date IP Version 4 remains the most widely deployed version, but support

for IP version 6 is growing in popularity. In this thesis we will restrict ourselves to

IP version 4, and accordingly the packet format depicted in Figure 3.1 corresponds

43

3.1 The TCP/IP Protocol Suite

to this version.

0 8 16 24 32

TOTAL LENGTH

SOURCE IP ADDRESS

IP OPTIONS (IF ANY) PADDING

VERS HLEN

19

DESTINATION IP ADDRESS

DATA PAYLOAD

FRAGMENT OFFSET FLAGSIDENTIFICATION

TIME TO LIVE PROTOCOL HEADER CHECKSUM

SERVICE TYPE

Figure 3.1: The structure of an IP packet.

The Protocol field contains a 8-bit value that indicates the type of data that is

contained in the payload. Thus once the IP processing at the receiver is complete,

this field indicates to which upper-layer protocol the payload should be forwarded

to. Examples of such upper-layer protocols are TCP, UDP, and ICMP which we will

describe shortly. The protocol number assignments are administered by a central

authority: the Internet Assigned Numbers Authority (IANA). The Time To Live

(TTL) field is essentially a counter that determines the life time of an IP packet.

Typically the sender initialises this field to an integer value less than 256, and each

intermediate router that forwards the packet decrements this counter by one. Thus

the TTL fields acts as a ‘hop count’ rather than a timer in seconds as it was originally

intended. When the counter reaches zero the router drops the packet and sends a

‘time to live exceeded’ (ICMP) error message to the sender. The Header Checksum

field is used to detect errors in the IP header. The sender computes the checksum

value by treating the header as a sequence of 16-bit integer values and adding them

together using one’s compliment arithmetic, and then taking the one’s complement

of the result. When computing the checksum, the Header Checksum field is assumed

to contain zero.

44

3.1 The TCP/IP Protocol Suite

In IP, errors are reported to communicating parties using the Internet Control Mes-

sage Protocol (ICMP). ICMP specifies a separate format for ICMP messages which

are then encapsulated in an IP packet. However, while ICMP uses the basic support

of IP as if it were a higher level protocol, it is actually an integral part of IP that

must be implemented by every IP module. ICMP messages contain a Type field and

a Code field, both of which are a byte long, and together identify the exact error

message. For instance the ‘time to live exceeded’ ICMP message is identified by type

11 and code 0. Similarly if the Protocol field in an IP packet indicates a protocol

that is not supported by the receiver, a ‘destination protocol unreachable’ (type 3,

code 2) ICMP message is returned to the sender. The contents of the ICMP payload

depends on the type of ICMP message, but it will generally contain a portion of the

IP packet that caused the error to occur. This is intended to help the sender better

diagnose the cause of the error.

As we already mentioned, an IP packet may need to traverse different physical

networks in order to reach its destination. Normally, physical networks can only

carry data payloads below a certain size. This size limit is known as the Maximum

Transmission Unit (MTU) of the network, and it varies according to the network’s

technology. This raises the question as to what happens when an IP packet is to tra-

verse a physical network whose MTU is smaller than the IP packet size. Essentially

the gateway in question will split the IP packets into a number of smaller IP packets.

This mechanism is known as fragmentation, and accordingly the smaller packets are

known as IP fragments. The IP fragments will then travel as independent IP packets,

and will normally be reassembled by the receiver to recover the original IP packet.

When a gateway fragments an IP packet into smaller fragments, the header contents

of the original IP packet are copied into those of the smaller fragments. Three fields

in the IP header, Identification, Flags, and Fragment Offset, control packet frag-

mentation and reassembly. The Identification field contains a unique integer that

identifies the packet. This allows the receiver to identify fragments belonging to the

same packet. The Fragment Offset field indicates the offset in the original packet

of the data contained in the fragment. This is specified in eight-byte units, starting

from offset zero, thereby enabling the receiver to reassemble the fragments in the

correct order. The low-order bit of the Flags field is called the More Fragments

(MF) bit, and it indicates whether the fragment is the last in the sequence. Thus if

the MF bit is set or the Fragment Offset is not zero, it indicates that the IP packet

45

3.1 The TCP/IP Protocol Suite

is actually a fragment of a larger IP packet. Together the two fields also allow the

receiver to determine whether all fragments belonging to a certain packet have been

received. As soon as the first fragment reaches the receiver, a reassembly timer is

started, and if it expires before all fragments are received, an ICMP ‘time exceeded’

(type 11, code 1) message is sent to the sender and the remaining fragments are

discarded.

The TCP/IP protocol suite follows a layered architecture where one protocol builds

on top of another. We have seen how IP builds on an aggregate of heterogeneous

networks to yield a single uniform logical network. However the interface that IP

provides is still rather rudimentary and is not immediately usable by applications.

Accordingly a transport protocol that operates on top of IP is introduced to offer

basic communication functionalities and present a simpler high-level interface to ap-

plications. Transport protocols are normally responsible for (a subset of) reliability,

flow control, congestion control, multiplexing communication among different appli-

cations, and connection-oriented communication. The Transport Control Protocol

(TCP), one of the core transport protocols in the TCP/IP protocol suite, offers all

of these services. Transport protocols encapsulate application data into segments,

which in turn are encapsulated in IP packets. TCP segments are also partitioned

into a header and a data payload. We do not cover the TCP format in detail, but

rather highlight the salient aspects which are relevant to this thesis.

3.1.2 TCP and UDP

The TCP protocol is a connection-oriented protocol, meaning that in order for two

parties to communicate they first have to establish a connection. A connection

provides applications with an interface similar to a data stream, as opposed to the

datagram-oriented interface that IP provides. This means that an application does

not have to deal with lost datagrams and sorting datagrams in the right order.

Instead this is handled by TCP through sequence numbers in the segment headers,

and its acknowledgement mechanism which handles the retransmission of segments.

This is combined with a moderate error detection capability through a checksum field

(similarly to IP) which is computed over the complete segment (rather than just the

header). To each side of a TCP connection is associated a 16-bit port number which

46

3.1 The TCP/IP Protocol Suite

is reserved by the sending or receiving application. This port mechanism allows

the multiplexing of multiple connections between the same pair of machines. Better

still it allows any pair of communicating applications to share multiple connections.

The TCP segment header includes two fields indicating the source port and the

destination port. Thus the receiver can identify to which TCP connection a TCP

segment belongs, from the sender and receiver IP addresses in the IP header, and

the source and destination ports in the TCP segment header. Either party can

terminate the connection at any point. This can happen gracefully, as is the case

when all data has been sent and the connection is no longer needed, or otherwise in

the event of an application error for instance, where the connection is torn down and

any received data that has not yet been forwarded to the application is discarded.

The User Datagram Protocol (UDP) is another transport protocol which constitutes

a core component of the TCP/IP protocol suite. It can be seen as a lightweight

alternative to TCP for applications where a reliable service is not necessary. UDP

offers an unreliable datagram-oriented application interface. It is unreliable in the

sense that it does not handle the retransmission of lost or corrupted messages, and

messages may be delivered out-of-order to the application. It is datagram-oriented

in that communication takes the form of independent messages rather than a data

stream as in connection-oriented communication. A port mechanism similar to that

of TCP is employed to multiplex communication between applications.

The lower end of port numbers 0–1023 (TCP and UDP) is the well-known ports

range which is reserved for specific services on which server applications listen for

connection requests from clients. Typical examples are TCP port 80 for HTTP,

TCP port 25 for SMTP, and UDP port 161 for SNMP. The range of port numbers

from 1024 to 49151 are the registered ports. They are assigned by IANA for specific

service upon application by a requesting entity. For instance, port number 1433 is

reserved for Microsoft SQL and port 3690 is reserved for the SVN version control

system. The range 49152-65535 contains dynamic or private ports that cannot

be registered with IANA. This range is used for custom or temporary purposes,

Client applications normally use source port numbers in this range for instance. If

a TCP segment or UDP datagram is received with a destination port on which no

application is listening, an ICMP ‘destination port unreachable’ (type 3, code 3) is

returned to the sender.

47

3.2 Three Ubiquitous Security Protocols

Note that the TCP/IP protocol suite is a fairly elaborate set of protocols, and in this

section we only covered basic aspects of it. The reader is referred to [28] for a more

in-depth treatment, or the corresponding protocol specification documents known

as RFCs, which are maintained by the Internet Engineering Taskforce (IETF).

3.2 Three Ubiquitous Security Protocols

We now turn our attention to security protocols intended to secure communication

over the Internet and TCP/IP in general. Such protocols normally use an array

of cryptographic primitives to provide a secure channel over which applications can

communicate. We focus on three specific protocols, which are probably the most

popular security protocols in use today.

3.2.1 TLS

As the name implies, Transport Layer Security (TLS), is a protocol for securing

Internet communication at the transport layer of the TCP/IP stack. Its predecessor,

Secure Sockets Layer (SSL), was developed by Netscape in the mid-1990s. In 1999,

the protocol was adopted by the IETF and specified as TLS 1.0 in RFC 2246 [32]. It

has since evolved through TLS 1.1 [33] to the current version TLS 1.2 [34]. Various

other RFCs define additional TLS cryptographic algorithms and extensions.

TLS actually consists of four separate protocols: the Handshake Protocol, the Alert

Protocol, the Change Cipher Spec Protocol, and the Record Protocol. We will

be mainly concerned with the Record Protocol, which uses symmetric-key crypto-

graphic primitives to yield a secure channel for use by the application layer. The

other three protocols are collectively referred to as the TLS handshaking protocols.

Among other things they are responsible for negotiating a ciphersuite (i.e. a set of

cryptographic primitives), authenticating the parties involved to each other, estab-

lishing a shared secret from which key material is derived, and handling error mes-

sages. The Record Protocol uses a stateful variant of the authenticate-then-encrypt

composition that we described in Section 2.4. The supported MAC algorithms are

all HMAC-based, with MD5, SHA-1 and SHA-256 being the allowed hash algo-

48

3.2 Three Ubiquitous Security Protocols

rithms in TLS 1.2 [34]. The encryption component can be either of the following:

AES in CBC mode, 3DES in CBC mode, or the stream cipher RC4. The latest

TLS specification [34] introduced support for dedicated authenticated encryption

schemes, but as of the time of writing these have not yet received wide support in

TLS implementations.

MAC tagPayload Padding

Encrypt

TLS Ciphertext Record

PayloadHDRSQN

MAC

HDR

Figure 3.2: Cryptographic processing of a TLS record.

Data to be protected by TLS is received from the application and is fragmented into

TLS plaintext records carrying data in chunks of 214 bytes or less. A TLS record

consists of a 5-byte header HDR, and a payload portion containing the application

data. The record header consists of a 2-byte version field, a 1-byte type field, and a

2-byte length field. Before any cryptographic processing takes place the payload may

be compressed, if this option was negotiated during the handshake phase. Figure 3.2

depicts the cryptographic processing that takes place on the TLS plaintext record

to produce a TLS ciphertext record, which is then forwarded to the TCP layer

for transmission. The sender maintains an 8-byte sequence number SQN which is

incremented for each record sent. A MAC is then computed over the TLS record

prepended with this 8-byte sequence number. The payload portion is then appended

with the MAC tag, and if CBC encryption is to be used, this is in turn appended

with a sequence of padding bytes. The length of the padding is such that the

combined length of the payload, MAC tag, and padding is an integer multiple of

the block size of the selected block cipher. The padding must consist of p + 1

copies of some byte value p, where 0 ≤ p ≤ 255. Furthermore, at least one byte of

49

3.2 Three Ubiquitous Security Protocols

padding must always be added (if CBC encryption is to be used). The padding may

extend over multiple blocks, and receivers must support the removal of such extended

padding. The resulting string, consisting of the concatenation of the payload, MAC

tag, and possibly the padding, is then encrypted using CBC encryption or RC4.

The transmitted TLS record is formed by prepended the resulting ciphertext with

the header HDR. Note that the sequence number is not transmitted as part of the

TLS record.

We conclude this section by briefly mentioning a variant of TLS known as Datagram

Transport Layer Security (DTLS). The DTLS protocol is a developed from TLS by

making minimal changes so as to allow it to operate over UDP instead of TCP. Its

latest version, DTLS 1.2, which builds on TLS 1.2 [34], is defined in RFC 6347 [83].

3.2.2 SSH

Secure Shell (SSH) was originally designed as a secure alternative to remote login

procedures such as telnet, rlogin, and rsh. It has since become a general purpose

tool for securing Internet traffic. SSH was first created in 1995 by Tatu Ylönen a

researcher at Helsinki University of Technology. Following a series of vulnerabilities

that had been discovered, a major revision of SSH was released as SSHv2 by the

IETF in a collection of RFCs [100, 98, 101, 99]. We here focus on SSHv2, and use

SSH as a shorthand to refer to this version throughout this thesis.

The SSH protocol consists of three major components: the Transport Layer Proto-

col, the User Authentication Protocol, and the Connection Protocol. The Transport

Layer Protocol operates over TCP, and it is responsible for the server host au-

thentication and initial key exchange, as well as protecting the confidentiality and

integrity of the subsequently transmitted data. The User Authentication Protocol

operates over the the Transport Layer Protocol and is responsible for authenticating

the user to the server. It offers different mechanisms for accomplishing this, such

as password-based and public-key-based schemes. A single SSH connection may

be shared among different applications. The Connection Protocol is responsible

for multiplexing the secure channel, between the client and the server, into several

logical channels. In this thesis we are mainly interested in the Binary Packet Proto-

50

3.2 Three Ubiquitous Security Protocols

col (BPP), the Transport Layer Protocol component responsible for authenticated

encryption.

MAC tag

Padding

Encrypt

SSH Ciphertext Packet

PayloadLENSQN

MAC

PL

Figure 3.3: Cryptographic processing of an SSH BPP packet.

Figure 3.3 depicts the cryptographic processing employed by the Binary Packet

Protocol. A payload message is first encoded by prepending a packet length field and

padding length field, and appending some padding. The packet length field LEN is

4 bytes long and contains the total length (in bytes) of the encoded packet excluding

the packet length field itself. The padding length field PL is 1 byte long and contains

the total number of padding bytes. A minimum of 4 padding bytes must be added,

up to a maximum of 255 bytes. Furthermore the padding should be random, and

such that the encoded data ends on a block boundary. This encoded message is then

encrypted, and a MAC tag is appended to the ciphertext to produce the final SSH

Ciphertext Packet. The MAC value is computed over the concatenation of a 32-bit

packet sequence number SQN, and the encoded (but not encrypted) message. The

sequence number is set to zero at the start of an SSH connection, and is incremented

after each packet. It is not sent over the channel but is maintained separately by

both communicating parties.

The SSH RFC [101] mandates support for CBC using 3DES, recommends support

for CBC using AES, and lists a further 12 block cipher variants in CBC mode as

being optional. Only one optional stream cipher is listed, ARCFOUR. The RFC

mandates that CBC mode with initial packet chaining be used throughout an SSH

connection. In this variant of CBC mode, the last block of ciphertext from one

packet is used as the IV for CBC mode for the next packet. Thus there is only one

initial vector, and the packets on a connection form a single data stream. A later

51

3.2 Three Ubiquitous Security Protocols

RFC [8] defines a stateful version of counter mode encryption for use with SSH. For

message authentication, it is required that HMAC using SHA1 be supported, with

HMAC using MD5 also being listed as an option.

3.2.3 IPsec

Internet Protocol Security (IPsec) is a suite of protocols designed by the IETF. It

offers security at the IP layer of the TCP/IP protocol stack, meaning that IPsec

provides cryptographic protection for IP packets (or their payloads). IPsec was

first specified in 1995, and the third and most recent version is specified in RFCs

4301–4309, released in 2005. It is deployed widely to build Virtual Private Networks

(VPNs) and secure remote access solutions. In addition it is also a mandatory com-

ponent of IPv6, and is part of the Universal Mobile Telecommunications System

(UMTS) standard – used for securing the backbone network. The main constituent

protocols of IPsec are the Authentication Header (AH), the Encapsulating Security

Payload (ESP), and the Internet Key Exchange (IKE). Each protocol supports mul-

tiple configurations, and the three protocols can be combined in various ways. This

high degree of configurability is what makes IPsec notoriously complex, and also

makes it harder to analyse its security.

The AH protocol provides integrity protection, data origin authentication and anti-

replay services for IP packets through the application of MAC algorithms and the

inclusion of sequence numbers. The ESP protocol provides similar services to AH

(though the coverage of integrity protection is more limited) and in addition pro-

vides confidentiality and traffic flow confidentiality services through symmetric key

encryption and variable length padding of packets. Each of AH and ESP can be op-

erated either in transport mode or in tunnel mode. Transport mode can be thought

of as the basic way of using AH and ESP to protect IP packets. Tunnel mode

processing can then be described as follows. The IP packet to be protected is first

encapsulated in another IP packet, and AH or ESP (transport mode) processing is

then applied to this new IP packet. Tunnel mode is typically used in VPNs, where

the IPsec processing is applied by a gateway. In contrast, transport mode, is typi-

cally used in settings where end-to-end security is needed. The IPsec processing is

thus applied by the host from which the IP packet originates. The IKE protocol

52

3.2 Three Ubiquitous Security Protocols

IP header IP payload

Original IP packet

IP header IP payload

IP header IP payload

AH (ICV=0)

Authenticate

AH (ICV set)

Figure 3.4: AH processing of an IP packet in transport mode.

employs a Diffie-Hellman protocol to exchange keys between IPsec parties. Alter-

natively keys can be set manually, which is normally simpler to configure in small

networks. Another important component of every IPsec implementation is the Se-

curity Policy Database (SPD). This is a set of policies defining the processing rules

for each type of IP traffic.

In this thesis we will be mainly concerned with the specifics of the AH and ESP

protocols. We will assume that the necessary policies and key material are already

in place. We now go onto describe these in more detail. For a more complete and yet

accessible coverage of the cryptographic processing in IPsec, the interested reader

can consult [77].

The AH protocol adds its cryptographic protection by inserting a bit sequence called

the Authentication Header into IP packets. This is depicted in Figure 3.4 for trans-

port mode. The exact format of the Authentication Header is shown in Figure 3.5.

The Integrity Check Value (ICV) field contains the MAC tag used to authenticate

the packet. The scope of the MAC calculation includes the IP payload, the IP header

and the Authentication Header itself. Certain fields of the IP packet header, such as

the TTL and checksum fields, cannot be input to the MAC calculation because they

may change during the packet’s transit across a network and so are unpredictable

to the receiver. These mutable fields and the ICV field are both set to zero for

the purposes of MAC calculation and verification. The length of the MAC tag de-

pends on the particular MAC algorithm in use. Restrictions are that the MAC value

53

3.2 Three Ubiquitous Security Protocols

must be an integral number of 32 bits in length and that the overall authentication

header must be a multiple of 32 bits in length for IPv4. Typical MAC algorithms are

HMAC-SHA1-96 [70] and AES-XCBC-MAC-96 [45], both having 96-bit long tags.

Next(Header Payload(Len Reserved

0 8 16 24 32

Security(Parameter(Index(kSPIV

Sequence(Number(Field

Integrity(Check(Value(-(ICV(kvariableV

Figure 3.5: Authentication Header format according to RFC 4302 [61].

At the receiver, the MAC is checked and the packet discarded if the MAC is incorrect.

In addition, when replay protection is enabled, the 32-bit sequence number carried

by AH is compared to a sliding window of recently received sequence numbers. The

packet is again rejected if the sequence number has already been received or if it is

deemed to be too old by falling to the left of the current window. A packet having

a valid MAC and a sequence number greater than the largest previously accepted

will always be accepted, causing the window to be shifted to the right. RFC 4302

[61] also supports the use of 64-bit extended sequence numbers.

The Next Header field in AH is a one byte (8-bit) field indicating the type of the

payload following the Authentication Header. For example, a value of 4 indicates

that what follows is an IPv4 packet (as would be the case in tunnel mode), while

a value of 6 indicates TCP. The Payload Length field indicates the length of the

Authentication Header in 32-bit words, minus 2. It is needed because the ICV field

may vary in length. The Security Parameters Index (SPI) field is a 32 bit value

identifying the cryptographic parameters (such as the MAC key) that were used

during outbound AH processing. The SPI is shared between sender and recipient,

and allows the recipient to quickly obtain the cryptographic parameters necessary

to perform inbound processing.

54

3.2 Three Ubiquitous Security Protocols

IP header IP payload ESP trailer

ESP headerIP header

in

out

Encrypt

Original IP packet

Encrypted inner packet

ICV

EncryptMAC

Figure 3.6: Encapsulating Security Payload processing of an IP packet in tunnel
mode.

It is clear from the evolution of ESP that its primary purpose is to provide a con-

fidentiality service. In its original version in [4], it only supported encryption with

integrity protection coming from AH. In its second version [63] it was extended

to support one or both (but not neither) of an encryption algorithm and a MAC

algorithm. RFC 4303 extended ESP to additionally support combined mode al-

gorithms (discussed in Section 2.4) that simultaneously provide confidentiality and

authenticity.

In transport mode, an ESP trailer is first appended to the IP packet’s payload and

the result is encrypted. An ESP header is then inserted between the encrypted IP

payload and the IP header. If the packet is to be integrity protected as well, a MAC

is computed over the concatenation of the ESP header and the ciphertext, and the

tag (ICV) is appended to the ciphertext. In tunnel mode, the original IP packet

is first encapsulated in an outer IP packet, and this outer packet is then processed

similarly. Note that in this case, since the inner packet constitutes the payload of

the outer packet, the entire original packet is protected (including its header). The

ESP processing of an IP packet in tunnel mode is illustrated in Figure 3.6, and

Figure 3.7 shows the ESP format in more detail. Note, however, that Figure 3.7

does not apply for combined mode algorithms, which may not have explicit IV or

ICV fields, for example.

The ESP header consists of the SPI and Sequence Number Fields, which are mainly

used in the same way as in AH. However, if integrity protection is not enabled, the

55

3.2 Three Ubiquitous Security Protocols

0 8 16 24 32

SequenceDNumber

InitialDVectorD-IV5

SecurityDParameterDIndexD-SPI5

PayloadDDataD-variable5

TFCDPaddingD-optionalhDvariable5

PaddingD-0DHD255Dbytes5

PadDLength NextDHeader

E
ncryp

tionDS
cope

IntegrityDCheckDValueDHDICVD-variable5

Figure 3.7: Encapsulating Security Payload format according to RFC 4303 [62].

sequence numbers must be ignored by the recipient. The ESP trailer serves mainly

to ensure that when it is appended to the packet’s payload, the combined length is

an integer multiple of the block size. It consists of the padding, followed by a Pad

Length field and a Next Header field. The Pad Length field indicates the number

of padding bytes present, whereas the Next Header field serves the same purpose as

in AH. It is permissible for the padding to be of variable length and to extend over

multiple blocks. An ESP encryption algorithm may specify its own padding rule;

otherwise a default rule is specified in [62, Section 2.4]. This default padding method

is what is universally used in practice. The default padding consists of either a null

string or t bytes of the form 1, 2, . . . , t for some t with 1 ≤ t ≤ 255.

RFC 4303 introduced two mechanisms for providing traffic flow confidentiality, that

is, the provision of spurious traffic to frustrate an attacker’s attempts to gather

information from the mere existence of IPsec protected traffic, or from statistics

concerning that traffic. These include the optional TFC padding and dummy pack-

56

3.3 Related Theoretical Analysis

ets. TFC padding can be inserted after the payload data. This is in addition to

the normal ESP padding. However, TFC padding can only be used if the receiver is

able to unambiguously remove it using information about the proper payload length

that is embedded in the payload itself. This will be possible, for example, in tunnel

mode, where the Total Length field in the inner packet header gives the needed

information. In transport mode, this relies on the upper layer protocol format in-

cluding a length field which can be used for the same purpose. Dummy packets

can be indicated simply by using 59 for the protocol value in the Next Header field

and otherwise creating a normal ESP header and trailer. According to RFC 4303,

a receiver must discard any such packet without generating an error message.

RFC 4305 specifies TripleDES-CBC [82] and the NULL algorithm [46] as the manda-

tory encryption algorithms, and recommends support for AES-CBC [44] and AES-

CTR [54]. As for integrity protection, it mandates support for HMAC-SHA1-96

[70] and the NULL algorithm, and recommends support for AES-XCBC-MAC-96

[45]. Other algorithms are allowed; a number of RFCs, such as [94, 55, 74, 66],

specify additional algorithms that could be used with ESP. As already mentioned,

RFC 4303 prohibits that the encryption algorithm and the integrity algorithm be

both set to NULL. RFC 3686 states that if AES-CTR is used in ESP, then it must

be accompanied by a non-NULL integrity protection algorithm. This is because

AES-CTR is vulnerable to simple plaintext manipulation without some additional

integrity protection. Note that RFC 3602 makes no such requirement for AES-

CBC. This appears to be yet another incarnation of a long-standing issue in the

IPsec RFCs [84, 20, 81, 29], in which CBC mode is perceived to offer some form

of integrity protection, and is therefore less prone to plaintext manipulation (and

related attacks).

3.3 Related Theoretical Analysis

Shortly after the work of Bellare and Namprempre on generic composition (dis-

cussed in Section 2.4), Krawczyk published a paper [69] titled ‘The Order of En-

cryption and Authentication for Protecting Communications (or: How Secure Is

SSL?)’. Krawczyk analysed two instantiations of authenticate-then-encrypt, one

where the encryption component is a one-time-pad and CBC encryption in the other.

57

3.3 Related Theoretical Analysis

He showed that these schemes satisfy IND-CPA security and a one-time variant of

INT-CTXT in which the adversary is only allowed one query to the try oracle. In

[13] it is shown that this one-time variant of INT-CTXT is equivalent to INT-CTXT

up to a factor of qt, where qt is the number of try queries. It thus follows from

Krawczyk’s proof that these two instantiations are secure in the AE sense. However,

in the case of CBC encryption, this result is of limited applicability to SSL/TLS.

Krawczyk’s analysis considers an instantiation in which the message must be a mul-

tiple of the block size, the tag length is equal to block size, and no padding is used.

Unfortunately, this does not cover any usage case of TLS.

Maurer and Tackmann [73] analyse an authenticate-then-encode-then-encrypt com-

position, where the encoding step is meant to model any intermediate formatting

– such as padding. They consider a secure channel formulation of security, within

the framework of constructive cryptography [72]. They show that this composition,

when instantiated with CBC encryption or the one-time-pad, yields a secure channel

when the encoding step is a function. Thus their result only applies in the restricted

case where only minimal padding is allowed.

A more accurate representation of the TLS Record Protocol was recently analysed

by Paterson, Ristenpart and Shrimpton [78]. They consider a security notion called

Length-Hiding Authenticated Encryption (LHAE), extending the AE notion with

the intention to capture a scheme’s limited ability of concealing plaintext lengths.

Their results point out an interesting aspect of the authenticate-then-encode-then-

encrypt composition as used in TLS with CBC encryption (MEE-TLS-CBC). More

specifically they show that the tag size of the MAC, in relation to the block size,

plays a crucial role in the security of the scheme. Their first contribution is a

distinguishing attack against MEE-TLS-CBC that is successful whenever the tag

size is smaller than the block size. The attack exploits variable length padding and

is therefore outside the model of TLS used in [69, 73]. On the other hand, they show

that this composition is LHAE secure as long as the sum of the minimum message

length and the tag size is greater or equal to the block size. Note that in TLS the

minimum message length is zero. An important assumption that is required for their

proof is that decoding errors and MAC verification failures be indistinguishable to

the adversary.

58

3.3 Related Theoretical Analysis

An analysis of the SSH Binary Packet Protocol was given by Bellare, Kohno and

Namprempre in [16]. They consider several variants of the SSH BPP. They denote

by SSH-IPC (SSH with interpacket chaining) the SSH BPP using CBC mode as

defined in [101]. They present a chosen-plaintext attack against SSH-IPC, which

is attributed to Wei Dai. Next they consider SSH-NPC, which refers to the SSH

BPP using CBC mode without packet chaining, using a fresh, random IV for each

packet, but with a fixed padding format. While this variant is IND-CPA secure, it

is not secure in the IND-CCA sense, as it is vulnerable to a reaction attack1. They

then go on to propose three variants SSH-$NPC, SSH-CTRIV-CBC and SSH-CTR,

which they prove secure in the sense of IND-CPA and INT-sfCTXT, and hence by

Theorem 2.3 is also IND-sfCCA secure. SSH-$NPC refers to the SSH BPP using CBC

mode with random per packet IVs and random padding. SSH-CTRIV-CBC refers

to using CBC mode with IVs generated by encrypting a counter. In this proposal,

the IVs are not transmitted, and the encryption and decryption are stateful. SSH-

CTR refers to the SSH-BPP with counter mode encryption, where the counter is

maintained by the sender and the receiver rather than being transmitted at the start

of the packet.

As we shall see later on, the analysis of Bellare, Kohno, and Namprempre misses

an important practical aspect of the SSH protocol. This relates to the fact that

over the Internet, an SSH ciphertext packet may be delivered in a piecewise fashion.

This gives rise to a new line of attack which turns out to be fatal for the security of

SSH-$NPC [1]. We will give more details about this attack in Section 3.5. Paterson

and Watson [79] look at SSH-CTR as implemented in the OpenSSH distribution.

They prove its security in a model which grants the adversary the ability to deliver

ciphertexts in a piecewise fashion, thereby showing that it is immune to the attack

in [1].

IPsec has not received much formal treatment, probably in part due to its higher

degree of complexity. As we saw in the previous section, when integrity protection

and confidentiality are both enabled in ESP, they are combined in an encrypt-then-

authenticate fashion. Alternatively, it is also possible to compose AH and ESP

both in encrypt-then-authenticate and authenticate-then-encrypt modes. Encrypt-

1In a reaction attack an attacker is able to gain information about a target ciphertext, solely
from learning whether other related but distinct ciphertexts are valid or not.

59

3.4 Padding Oracle Attacks

then-authenticate was shown in [17] to always yield AE security (if the constituent

primitives meet standard security requirements), albeit the composition they con-

sider omits many specifics of the IPsec encrypt-then-authenticate realisations. As

for authenticate-then-encrypt, none of the aforementioned analyses are relevant to

the IPsec setting. The analysis of [69] omits any intermediate encoding steps, and

it does not consider tag sizes that match the ones used in IPsec. As explained in

Section 3.2.3, the paddings used in IPsec are not required to be minimal, which

means that the results of [73] also do not apply. As for the analysis in [78], even

though they consider non-minimal padding, their results are specific to TLS and

the padding format it uses. In Chapter 4 we will present new results on the secu-

rity of authenticate-then-encrypt in IPsec. Finally, the IPsec RFCs [62] also allow

ESP to be operated with CBC mode encryption only, i.e. without any additional

integrity protection. As early as 1996, Bellovin [20] had sketched a number of at-

tacks to highlight the problems of permitting such a configuration. Nonetheless

these attacks omitted many practical details and their practicality remains ques-

tionable. Later in [81], Paterson and Yau discovered and implemented a series of

plaintext-recovery attacks against the Linux IPsec implementation. However, the

Linux IPsec implementation omitted certain policy checks that were mandated by

the RFCs which would have prevented these attacks. Thus their attack did not pose

a threat to any RFC-compliant IPsec implementation, and was perceived as high-

lighting a vulnerability in Linux rather than in the IPsec standard. The matter was

later settled in [29] by Degabriele and Paterson, who discovered and implemented

full-plaintext recovery attacks against the OpenSolaris IPsec implementation, which

does conform to the IPsec RFCs. Their attack exploits padding oracles, which we

discuss in the next section. Despite such incontestable evidence on the insecurity

of ESP in encryption-only, to this day, this configuration is still permitted by the

IPsec RFCs.

3.4 Padding Oracle Attacks

Padding oracle attacks were first introduced by Vaudenay in [93], and are mostly

specific to CBC encryption2. As we saw earlier, in practice data needs to be padded

2It is possible to extend these attacks to similar modes of operation, such as HCBC [11], but
that is beyond our scope.

60

3.4 Padding Oracle Attacks

according to some rule before it can be encrypted using CBC mode. Many padding

schemes that are used in practice are susceptible to padding oracle attacks. Padding

oracle attacks assume a setting in which the attacker has access to a special oracle

O(·) that reveals whether a ciphertext is correctly padded or not. This attack model

was first considered by Bleichenbacher [21], in the public-key setting, to attack

PKCS#1 v1.5 a padding scheme suited to RSA encryption. Vaudenay showed that

for many widely-used padding schemes, a padding oracle can be leveraged by an

attacker to decrypt CBC-encrypted ciphertexts, using a relatively small number of

queries to the oracle.

For concreteness consider the padding scheme employed in TLS. Here, a correctly

padded ciphertext means that the CBC decryption of the ciphertext is a byte string

ending in one of the valid padding patterns “0x00”, “0x00 ‖ 0x01”, etc. Let c∗

be the target ciphertext that an attacker wishes to decrypt, and denote by c∗i the

ith block of this ciphertext. For any ciphertext block c, we index its bytes by cj

for 0 ≥ j ≤ b − 1 starting with the leftmost byte, where b is the block size in

bytes. Vaudenay’s padding oracle attack proceeds as follows. The attacker forges

a new ciphertext r ‖ c∗i by appending the target ciphertext block c∗i to a block r

that it picks uniformly at random. It then submits this ciphertext to the padding

oracle. Due to the block r being random, the decryption of this ciphertext will

yield a random block of plaintext. As such, it is unlikely that this plaintext block

will be correctly padded. However, in the event that it is, the most likely case is

when the last byte is “0x00”. The probability of this event occurring is 2−8. The

attacker can however iterate through all possible values of this last byte by iterating

through all possible values of r[b− 1]. When a value for r[b− 1] is found such that

O(r ‖ c∗i) returns valid, it means that r[b − 1]⊕DK(c∗i)[b − 1] = “0x00”. Next

the attacker aims to find a ciphertext that terminates with the padding “0x01 ‖
0x01”. It thus sets r[b − 1] such that the last byte of the decrypted ciphertext is

“0x01”, and iterates through all possible values of r[b− 2] until the padding oracle

returns valid again. The attacker continues this process, extending the padding

byte by byte, until the padding fills the complete block. At this point it knows

that r ⊕DK(c∗i) = “0x(b− 1) ‖ . . . ‖ 0x(b− 1)”. Since it knows r, it can compute

the block DK(c∗i). It can then recover the plaintext block corresponding to c∗i by

computing DK(c∗i)⊕ c∗i−1. All other blocks in the target ciphertext can be recovered

similarly, requiring at most b× 28 oracle queries per block.

61

3.5 A Ciphertext Fragmentation Attack on SSH

In the above we have assumed that the first validly padded ciphertext that is found

by the attacker corresponds to the shortest padding pattern. The odd cases where

this does not hold are easy to detect, and are in fact desirable as they reduce the

overall complexity of the attack. In addition it is easy to see that the attack can

be easily adapted to other padding schemes of similar formats. What remains to

address is how to realise the padding oracle itself. In [93] Vaudenay conjectured

that padding oracles could possibly be realised for TLS, IPsec and SSH. In the case

of TLS for instance, he outlined how error messages from a TLS server could be

used to leak the validity of padding in ciphertexts. Such errors however are fatal, in

that they result in the TLS connection being torn down, which prevents the above

attack. Thus the attack as described in [93] remains theoretical in nature. Later

works [27, 29, 30, 37, 57, 2, 3] managed to overcome such practical limitations, and

realised variants of Vaudenay’s attack against practical cryptosystems such as TLS,

IPsec, ASP.NET, XML encryption and DTLS. We will not cover the details of these

attacks at this point, but we will return back to them later on in this thesis. In

particular we will cover in depth some attacks against IPsec that were published in

[30] in Chapter 4.

3.5 A Ciphertext Fragmentation Attack on SSH

We conclude this chapter by presenting an attack against SSH due to Albrecht,

Paterson and Watson [1]. The attack works only when SSH is used with CBC

mode encryption, and can recover up to 32 bits of plaintext from any ciphertext

block. In order to understand the attack, let us first consider how decryption takes

place in the SSH BPP. Remember that over a TCP/IP network, a BPP packet

may be fragmented and delivered in a piecewise fashion. Since there is no length

indicator for a BPP packet other than the content of the packet length field, any

SSH implementation must decrypt the first ciphertext block to obtain that field

and use it to determine how much data to accept before deciding that a complete

BPP packet has arrived and moving on to perform the MAC check. Thus an SSH

implementation will await further data, unless sufficient data has already arrived to

complete the packet.

An attacker can exploit this step in the decryption process as follows. Given any

62

3.5 A Ciphertext Fragmentation Attack on SSH

target ciphertext block c∗i , an attacker can obtain the first 4 bytes of the correspond-

ing plaintext block. Let c∗i−1 denote the block preceding c∗i in the ciphertext stream,

and let c` denote the last ciphertext block transmitted. The attacker sends to the

receiver as a first fragment of ciphertext the block c∗i , so that it is interpreted as

the block containing the length field. Then the attacker feeds a sequence of random

1-block fragments to the receiver, until an (encrypted) error message is returned and

the SSH session is terminated. At this point, the attacker knows that the MAC has

been checked, and so knows that the complete ciphertext has been received by the

decryption oracle. The number of 1-block fragments needed to trigger this event,

then, reveals the value of the length field which corresponds to the first 4 bytes of

DK(c∗i)⊕ c`. The attacker can then use this to compute the first 4 bytes of the

target plaintext block DK(c∗i)⊕ c∗i−1.

The above exposition omits a number of important details; what happens for in-

stance if the length field in DK(c∗i)⊕ c` is not a multiple of the block length? Upon

recovering the length field, the decryption algorithm performs a number of checks

to verify its validity. The OpenSSH implementation for instance would check3 that

the length field is not less than 5 or greater than 218. The latter bound is intended

to mitigate against certain Denial-of-Service (DoS) attacks that relate to ciphertext

fragmentation4. If this check fails the session is terminated and an error message

is sent over the connection. The OpenSSH implementation then verifies that the

total number of bytes expected in the packet is a multiple of the block size. This

check is also fatal, in that if it fails the SSH session is terminated, but no error

message is sent. However the attacker can detect such an event, as it will result in a

termination of the TCP connection over which the SSH session is running. Thus, if

after injecting c∗i , the TCP connection over which the SSH connection is running is

terminated without an SSH error message (indicating a failure of the second length

check) or the SSH connection enters a state in which it is waiting for more data,

then the attacker knows that the decrypted block has passed the first length check.

This implies that the first 14 bits of the decrypted block are all zero. At this point

the attacker can already recover the first 14 bits, and it succeeds with probability

2−14 − 5/218 ≈ 2−14. If the SSH connection enters a wait state, then both checks

have passed and the attacker can continue as described above by injecting 1-block

3After that the attack in [1] was reported, these validation checks have been amended in later
versions of OpenSSH.

4We will elaborate more on such DoS attacks in Chapter 6.

63

3.5 A Ciphertext Fragmentation Attack on SSH

fragments until a MAC-related error message is triggered. This allows the attacker

to recover all 4 bytes, but the attack succeeds only with a probability of roughly

2−18 (assuming a block size of 128 bits).

64

Chapter 4

New Attacks on IPsec

Contents

4.1 Introduction . 65

4.2 Preliminaries . 68

4.2.1 IP and IPsec . 69

4.2.2 Mauling IPsec-Protected Packets 70

4.2.3 ESP Trailer Oracles . 72

4.3 The Attacks . 73

4.3.1 Attack 1: A Chosen Plaintext Attack 74

4.3.2 Attack 2: TTL Expiry . 76

4.3.3 Attack 3: Fragmentation . 78

4.4 Attacking Other Configurations 81

4.5 Experimental Results . 83

4.6 Summary . 85

In this chapter we present new attacks against authenticate-then-encrypt configura-

tions of IPsec. We elaborate on the practical details and our experience in imple-

menting the attacks.

4.1 Introduction

IPsec is a notoriously complex protocol suite, but one of great importance in today’s

Internet. Part of IPsec’s complexity arises from a deliberate attempt by IPsec’s de-

signers to provide a flexible and highly configurable approach to providing security

services for IP traffic. The RFCs specifying the major component protocols ESP,

AH, IKE [61, 62, 60] and that describing the IPsec architecture [65] offer only limited

65

4.1 Introduction

guidance to end users about how best to configure IPsec to achieve their desired se-

curity goals. Moreover, little security analysis of IPsec seems to have been published.

In particular, whilst it is by now well-established that using ESP in encryption-only

configurations is insecure in general [20, 81, 29], there appears to have been no sys-

tematic security evaluation of the many different ways of combining encryption and

integrity protection that are allowed by IPsec:

• ESP may provide its own integrity protection, in which case it is provided by

a MAC algorithm that is applied after ESP’s encryption – an encrypt-then-

authenticate construction.

• Alternatively, AH can be used to provide the protection, again using a MAC

algorithm, though with the MAC algorithm having a greater scope than in

ESP. In this case, packets may be first integrity protected by AH and then

encrypted using ESP, or first encrypted by ESP and then integrity protected

by AH (where now the extended scope of AH’s integrity protection means

that more fields of the IP header are protected than would be the case with

ESP-provided integrity protection).

• It is even possible to achieve an authenticate-then-encrypt construction using

two layers of ESP processing.

• Further, the current version of ESP allows combined-mode algorithms to be

used, wherein encryption and integrity protection are rolled into a single pro-

cessing step.

• In all of the above configurations, AH and/or ESP may each be applied in

either tunnel mode or transport mode.

• To add a final dimension, both AH and ESP allow sequence number checking

to be performed as an option, in order to provide protection against replay

attacks. This replay protection service should be disabled if manual keying

is used (see [61, Section 5] and [62, Section 3.3.3]), is recommended to be

disabled for multicast traffic ([62, Section 3.4.3]), and may be problematic

when differentiated classes of traffic are protected by a single SA ([65, Section

4.1]). As we shall see, whether the replay protection service is disabled or not

has a significant impact on some of our attacks.

66

4.1 Introduction

It is notable that the previous version of the IPsec architecture [64] was more specific

about which combinations must or must not be supported in IPsec implementations

than is the current version [65]: the former required support for some basic config-

urations and explicitly outlawed the combination of AH followed by ESP both in

transport mode, while the latter makes no prohibitions.

What guidance can be extracted from the literature? Theoretical support for the

encrypt-then-MAC options comes from [17, 69], where it is shown that this approach

generically provides IND-CCA security if the component encryption algorithm is IND-

CPA secure (as is the case, for example, for CBC mode encryption with a random

IV — see Section 2.3.3) and the component MAC algorithm is strongly unforgeable.

Concerning authenticate-then-encrypt options, it is noted in [65] that “an under-

lying integrity service, such as AH, applied before encryption does not necessarily

protect the encryption-only confidentiality against active attackers”, suggesting that

such configurations should be avoided. Here, [65] cites [69] for theoretical support.

However, a closer examination of [69] shows that it contains positive security results

about the authenticate-then-encrypt construction when the encryption scheme is

implemented using either a secure stream cipher or CBC mode of a block cipher.

These are the primary encryption schemes currently supported by IPsec standards.

Moreover, the known examples in [17, 69] showing that authenticate-then-encrypt

constructions are not generically secure are rather artificial. Thus the results of

[69] could be interpreted as providing support for authenticate-then-encrypt config-

urations of IPsec. Further support comes from a widely-cited critique of IPsec by

Schneier and Ferguson [39], which states “When both encryption and authentication

are provided, IPsec performs the encryption first, and authenticates the ciphertext.

In our opinion this is the wrong order” and later goes on to say “The ordering of

encryption and authentication in IPsec is dangerous.” In [39] the argument is made

that a protocol should authenticate what was meant, not what was said, with SSL

as analysed in [95] being given as an example of a protocol adopting the “correct”

approach of authenticate-then-encrypt. Moreover, a putative attack against encrypt-

then-authenticate configurations of IPsec is given in [39], lending further support to

the authenticate-then-encrypt choice for IPsec1. A standard textbook on network

1However this attack requires the receiver to use the wrong key when decrypting, and it is hard
to envisage the circumstances under which this could occur in IPsec, except perhaps with re-use of
SPIs in a manually-keyed deployment.

67

4.2 Preliminaries

security [92] discusses several benefits that accrue from using an authenticate-then-

encrypt configuration of IPsec, including the ability to store MAC values along with

plaintexts for later checking. A textbook aimed at implementers of cryptography [40]

extensively discusses the merits and demerits of the MAC-then-encrypt approach to

building secure channels, and eventually recommends this construction over other

choices.

In summary there seems to be no solid argument about the security of authenticate-

then-encrypt configurations in IPsec. Theoretical results appear to be ‘too coarse’

to be meaningful for the case of IPsec, while all claims found in the literature that

are specific to IPsec are heuristic in nature. In addition, given the arguments on

both sides, and in the absence of firm guidance from the RFCs or other sources,

it seems plausible that a network administrator might well be tempted into select-

ing a authenticate-then-encrypt configuration of IPsec. In what follows we settle

this matter in the negative. We present a series of practical attacks against all

authenticate-then-encrypt IPsec configurations.

4.2 Preliminaries

Our attacks build on Vaudenay’s padding oracle attack [93], and exploit the interplay

between IP and IPsec in order to realise the padding oracle. For concreteness, we

study the common use case of using IPsec to build a simple site-to-site VPN, such

as the one illustrated in Figure 4.1. We assume that all cryptographic processing is

carried out at a pair of security gateways, but our attacks also extend to situations

where AH processing is carried out at hosts behind the gateways. Our attacks

come in three basic flavours, each with two main variants depending on whether

IPsec’s optional replay protection is enabled or not. Our attacks are powerful in

the sense that they can be used to recover plaintext from arbitrary IPsec-protected

packets. But they each have different characteristics in terms of their complexity,

their requirements for the attacker’s degree of control over the network, and their

plaintext requirements.

68

4.2 Preliminaries

IPsec tunnel

Gateway G Gateway G

A

B

A B

Host H

Host H

Figure 4.1: Network set-up.

4.2.1 IP and IPsec

Introductions to IP and IPsec, sufficient to understand the material in this chapter,

were presented in Section 3.1 and in Section 3.2.3 respectively. We now highlight

some of the finer details that relate to our attacks. Our exposition of the attacks

will initially assume an authenticate-then-encrypt configuration in which AH is first

applied in transport mode, followed by (encryption-only) ESP in tunnel mode. The

resulting packet format is illustrated in Figure 4.2. We will then elaborate on how

the attacks can be extended to the other configurations. Throughout we will assume

that CBC encryption is in use. A modification of our attacks would work against

AES-CTR, if it were not for the fact that [54] specifying AES-CTR requires that it

must be used in combination with ESP-provided integrity protection, implicitly in

an encrypt-then-authenticate construction. For ease of exposition we assume 64-bit

extended sequence numbers are not selected, but our attacks still work if they are.

AH IP payload ESP trailerESP headerIP header out IP header in

encryption scope

authentication scope

Figure 4.2: IPsec packet format assumed in the exposition of our attacks.

69

4.2 Preliminaries

In our attacks we assume that the relevant RFCs have been carefully followed by

an implementer. For example, our attacks exploit the recommendation of the ESP

RFC [62] to perform full padding checks when decrypting, and two of them rely on

support for Traffic Flow Confidentiality (TFC) padding that is mandated in [62].

One of the attacks depends on the details of IPsec’s treatment of fragmented packets,

while all depend on the manner in which IPsec handles ICMP traffic. Our attacks

are developed with the RFC specifications in mind, but previous work [29] has shown

that IPsec implementations do deviate significantly from the RFCs in ways that can

stop attacks from working in practice. To compensate for this, we report on the

experimental validation of our attacks against the OpenSolaris implementation of

IPsec, showing that two out of three of our attacks ‘on paper’ can be converted

into working attacks against a real implementation. Our choice of OpenSolaris was

driven by the high quality of its code and its close adherence to the IPsec RFCs, and

not because it has any particular weaknesses that we wanted to exploit. We believe

that our attacks would apply to any comparably careful implementation of IPsec.

The IPsec architectural RFC [65] explains in detail how IPsec should handle ICMP

messages, distinguishing between error and non-error messages. Our attacks use

ICMP messages of both types, and the specific messages used in our attacks are not

blocked by IPsec. However, they are only visible to the attacker in encrypted form

and so typically need to be detected by their characteristic (though implementation-

dependent) lengths, or via timing correlation.

4.2.2 Mauling IPsec-Protected Packets

In our attacks, we will flip certain bits in the headers of inner datagrams, by flipping

bits in the initial vectors of ciphertexts (explained in Section 2.3.3). Any such mod-

ifications will require further compensation to be made elsewhere in the header so

that the Header Checksum (calculated as the 1’s complement of the 1’s complement

sum of the 16-bit words in the IP header) is still correct – otherwise the inner data-

gram will be silently dropped. In [29, 81], a number of techniques were developed

for ‘correcting’ checksums in an efficient manner. We need to further develop these

techniques so that our attacks are efficient for the IPsec configurations considered

here.

70

4.2 Preliminaries

Considering each 16-bit field in the IP header as an unsigned integer, suppose we

wish to subtract the value δ from one of these 16-bit fields. Let S represent the 1’s

complement sum of all the 16-bit fields over which the checksum is computed, then

the IP header checksum is given by S (the complement of S). Thus the new value of

the IP header checksum should be set to (S � δ) where � denotes 1’s complement

addition. Then we need to select a 16-bit value mask such that:

mask⊕ S = (S � δ)

and XOR this value mask to the appropriate field in the IV. We can rewrite this

equation as:

mask = S ⊕ (S � δ) = S ⊕ (S � δ).

Hence we can, for a fixed value of δ, compute all possible solutions mask to the

above equation along with their probabilities of success in correcting the checksum,

assuming that S is a uniformly distributed 16-bit value. We then use the list of

possible values mask in order of decreasing probability when trying to correct the

checksum.

An example is in order. Suppose we wish to decrease the TTL field from a known

value 0xFF to the value 0x00 and correct the checksum. Because of the position

of the TTL field in the IP header, this implies a 16-bit value δ = 0xFF00. Some

of the resulting 66 masks having non-zero probability are shown in Table 4.1 along

with their probabilities, which were calculated by exhaustive search over S. In this

case, the number of trials required is decreased from the average of 215 that would

be needed using the methods of [29, 81] to an average of only 6.75. On the other

hand, assuming nothing about the TTL field except that it is uniformly distributed,

then a simple calculation using a variant of this approach shows that the expected

number of trials needed to set the TTL field to 0x00 and correct the checksum is

only 382.

This idea can be combined with the idea from [29] of using the ID field to compensate

for the bit flips, rather than the checksum field itself. Because of the location of this

field in the second 32-bit word of the IP header, this allows the above improvements

to be deployed even for a 64-bit block cipher.

71

4.2 Preliminaries

mask probability

0000 0001 0000 0001 2−2

0000 0011 0000 0001 2−3

0000 0001 0000 0011 2−3

0000 0111 0000 0001 2−4

0000 0011 0000 0011 2−4

0000 0001 0000 0111 2−4

0000 0001 0000 1111 2−5

...
...

1111 1111 1111 1111 2−16

Table 4.1: Table of masks and probabilities for δ = 0xFF00

4.2.3 ESP Trailer Oracles

Our attacks will make use of ESP trailer oracles, a concept introduced in [29] as an

extension of the padding oracle concept from [93]. Such an oracle tells the attacker

whether or not the trailer fields (including padding, pad length and NH bytes) of an

encryption-only ESP-protected packet are correctly formatted — see Section 3.2.3

for the ESP trailer format. It is shown in [29] how repeated access to such an oracle

allows an attacker to decrypt ESP-protected ciphertext blocks in a byte-by-byte

fashion, at a cost of at most 216 queries to the oracle to extract the rightmost 2

bytes of the target block and at most 28 queries for each remaining byte of the

target block. We next outline how the ideas from Section 3.4 can be adapted to the

case of IPsec.

Suppose we have a carrier packet that is protected by encryption-only ESP in tunnel

mode, and a target ciphertext block c∗i (from any packet protected by the same key

K). The rightmost 2 bytes of c∗i are extracted as follows. We splice blocks r, c∗i onto

the end of the carrier packet, and submit this new packet to the oracle. Here r is

a randomly selected block. By varying the rightmost 2 bytes of r in a systematic

fashion, we can explore all possible values of the rightmost 2 plaintext bytes in the

block r⊕DK(c∗i); these are interpreted as the Pad Length and Next Header bytes of

the ESP trailer by the oracle, and it is argued in [29] that, with high probability, only

the values 00,04 for these bytes will produce a positive response from the oracle.

Once the oracle responds positively, the corresponding original plaintext bytes from

ci−1⊕DK(c∗i) can be easily recovered by simple XOR arithmetic. The attack is then

72

4.3 The Attacks

extended to plaintext bytes further to the left in the block by trying to construct

longer valid trailer byte patterns, starting with 01,01,04.

This leaves the question of how to construct an ESP trailer oracle. This problem

was solved in [29] for the encryption-only case by constructing a special packet that,

providing the packet was not dropped because of a failure of ESP’s padding checks,

always generated some kind of error response. Usually this takes the form of an

ICMP message. In [29], for tunnel mode, encryption only ESP, this was done by

using CBC bit flipping and checksum correction to create a packet whose inner

packet had an unsupported protocol field. The resulting ICMP message is usually

transmitted in encrypted form on the IPsec tunnel, but it was shown in [29] how such

messages can be detected based on characteristic lengths or via timing correlation.

In summary, to mount this kind of attack, we need a carrier packet that produces

a detectable response whenever ESP’s trailer formatting checks pass. In [29], this

required modification of IP header fields in the inner packet. This clearly creates

a problem when the inner packet is protected by AH, as it is in the situations we

are interested in here: now modifications to header fields may be detected by AH

processing and the packets dropped, causing the oracle to be lost. An extra level

of complication arises if AH’s replay protection is enabled: now, each carefully-

constructed carrier packet can only be used once, since if it were to be repeated, its

inner packet would be deemed to be a replay during AH processing and so dropped,

again causing the ESP trailer oracle to be lost. Finally, we also want to consider

transport mode configurations of IPsec, and additional ideas are needed to cater for

this.

As we explain in the sections that follow, all of these problems can be overcome and

appropriate ESP trailer oracles constructed.

4.3 The Attacks

We begin by describing our three basic attack ideas in the context of the IPsec

configuration depicted in Figure 4.2 that first applies AH in transport mode and

then ESP (encryption only) in tunnel mode to packets flowing from GA to GB. This

73

4.3 The Attacks

seems to us to be the most natural MAC-then-encrypt configuration, and it also

turns out to be the easiest to attack. We then go on to explain how to extend the

attacks to other MAC-then-encrypt configurations. In each case, we explain how to

recover the plaintext block corresponding to a single target ciphertext block c∗i . Of

course, all of the attacks extend to multiple blocks in the obvious way.

4.3.1 Attack 1: A Chosen Plaintext Attack

Our first attack requires a single chosen plaintext and can recover arbitrary IPsec-

protected plaintext. The attack exploits the fact that neither TFC padding nor

ESP’s normal encryption padding are protected by AH’s MAC, and that, in accor-

dance with [62], these bytes are discarded by the receiver before the inner packet is

passed to AH.

Suppose for now that AH replay protection is disabled, and recall that ESP replay

protection will always be disabled in this configuration. Suppose the attacker has

available a single IPsec-protected packet of the form depicted in Figure 4.2, for

which the inner IP packet has as its payload an ICMP echo request, which can be

directed either to the gateway GB itself or to a host behind that gateway. Clearly,

if this packet is injected into the network towards GB, we will see an (encrypted)

ICMP echo reply message in the reverse direction on the VPN between GA and GB.

Moreover, because AH and ESP sequence number checking is disabled, this packet,

if repeatedly injected into the network, will always cause such a response. This

packet can be used directly as a carrier in an ESP trailer oracle attack, as described

in Section 4.2.3. Here, ESP’s handling of TFC bytes ensures that the inner packet

presented to AH after ESP processing at GB always passes AH’s MAC check, even

after the blocks r, c∗i have been spliced onto the carrier packet. This is because after

the ESP trailer is checked and removed, any remaining plaintext resulting from the

spliced blocks together with the original ESP trailer will be interpreted as TFC

padding and discarded. Moreover, none of these discarded bytes are covered by

AH’s MAC. So, with a single chosen plaintext and an average of slightly more than

215 trial packet injections, any complete block of plaintext can be recovered.

This attack applies no matter what are the key-size and block-size of ESP’s encryp-

74

4.3 The Attacks

tion algorithm. It can also be applied if the inner IP packet carries TCP instead of

ICMP: now every received TCP segment provokes a TCP ACK packet of some type

in response, so every modified carrier packet that passes ESP processing at GB will

generate a detectable message in the reverse direction. Even if the TCP connection

for the TCP segment in the carrier packet is already closed, a TCP RST packet will

be sent in response, so our attacker will always get the response he requires. This

applies whether the endpoints for the TCP connection are the gateways themselves

or hosts behind these gateways. Assuming that the inner IP payload carries a TCP

message is a mild chosen plaintext assumption. This can be replaced by an even

weaker assumption by simply observing packets to see which ones generate replies,

and then using one of those packets as the carrier packet.

Attack 1 with AH replay protection enabled We can extend the above attack

to the case where sequence number checking is on. The attacker first gathers, for

each byte (or pair of bytes in case of the rightmost bytes) of plaintext that he wishes

to extract, a packet that is expected to generate a reply. These packets might carry

ICMP or TCP, for example. We make the assumption that the attacker can put

these carrier packets in order of (roughly) increasing AH sequence number. This is

reasonable, since they are likely to be intercepted in such an order. The attacker also

needs to control the flow of packets on the network so that the sequence numbers

in his carrier packets are always seen as being ‘fresh’ during any AH processing

at GB for the duration of his attack. This can be achieved by firstly blocking

all other packets from GA to GB except the attacker’s carrier packets during the

attack, and secondly by switching to the next carrier packet each time a response

packet is detected on the VPN between GA and GB. The latter step coupled with

our assumption about AH sequence number ordering ensures that, each time ESP

trailer processing completes and AH processing is done, packets are not rejected by

AH because they have repeated (or old) sequence numbers. Otherwise, the attack

is as before.

For ease of presentation, we have described a simple version of the attack that

requires the attacker to control the flow of traffic during the attack. It can be

adapted to be less disruptive to traffic flow by making use of carrier packets as they

become available to the attacker, but this would be more complex to implement.

75

4.3 The Attacks

The only drawbacks of Attack 1 are its very mild assumptions about the nature of

plaintexts, its consumption of multiple carrier packets when AH replay protection is

enabled, and the complexity of implementing the attack in a non-disruptive manner

in this case.

4.3.2 Attack 2: TTL Expiry

Our second attack exploits the fact that the AH MAC cannot cover all the fields of

the inner IP header. In particular, the TTL and checksum fields are unprotected and

so can be manipulated by the attacker. This attack allows us to relax the plaintext

requirements in comparison to the previous attack. However, we require that IP

packets on the VPN are directed to hosts behind GB. Again, we begin by assuming

that AH replay protection is disabled.

Attack 2, Step 1 We begin with a one-time preparation step. Suppose the

attacker captures an arbitrary IPsec-protected packet intended for a host behind

GB. The attacker can manipulate bits in the IV of the CBC-mode ciphertext after

the ESP header, with the effect of reducing the TTL field in the inner header to 0.

This requires the header checksum to be corrected, and here we rely on the improved

method described in Section 4.2.2. For example, supposing the TTL field’s original

value is 0x40, then on average 2 trials are needed, while if the original value is 0xFF,

then on average 6.75 trials are needed. Alternatively, we might only assume that

the TTL field is uniformly distributed; then, by carefully scheduling the bit flips

applied to the TTL and checksum fields in an extension of the method of Section

4.2.2, we can simultaneously reduce the TTL field to 0 and correct the checksum

using an expected number of 382 trials.

In each case, after a certain expected number of trials, the attacker succeeds in

creating an IPsec-protected packet for which the TTL field in the inner IP header

is 0, the checksum in the inner IP header is correct, and the AH MAC on the inner

packet verifies. Because the inner packet should be forwarded to a host behind

the gateway GB, such an IP packet should always induce GB to produce an ICMP

response (of type 11 and code 0). We will use this IP packet in step 2 as a carrier

76

4.3 The Attacks

packet. In the case when the starting value of the TTL field is not known, we need

to be careful to distinguish this ICMP response from any other replies that may

arise when the IP header checksum is correct but the TTL has not been successfully

set to 0.

Attack 2, Step 2 The attacker now mounts an ESP trailer oracle attack using the

carrier packet constructed in step 1, splicing blocks r, c∗i onto the end of the carrier

packet for different values r, starting with the 216 variants in the rightmost 2 bytes

of r. As with Attack 1, we rely on ESP’s handling of TFC bytes to ensure that the

inner packet presented to AH after successful ESP processing at GB always passes

AH’s MAC check, even with the blocks r, c∗i spliced onto the carrier packet. On

average, after 215 trials, an ICMP response will be detected in the reverse direction

on the VPN between GA and GB. This indicates a particular value of r for which

the packet ending in r, c∗i passed the ESP trailer checks. The attack now continues

in the usual way.

This attack only applies for encryption algorithms with 128-bit block size, because

we must be able to manipulate the TTL field in the inner IP header, and this is

located beyond the first 64 bits of the header. In step 2, the attack requires an

average of 215 + 14 · 27 trial packet injections to recover any complete 128-bit block

of plaintext.

Attack 2 with AH replay protection enabled We can modify the above attack

to cope with the situation where AH replay protection is enabled. The main differ-

ence is that we can no longer re-use a single carrier packet constructed in a first step,

because once AH processing has been triggered (after successful ESP processing),

a fixed carrier packet’s AH sequence number would always be rejected thereafter.

To overcome this, we combine the carrier packet generation and ESP trailer oracle

steps. Thus, for each choice of r used in a normal attack, we must splice r, c∗i onto a

sequence of trial packets, with each trial starting with a base packet and attempting

to manipulate the TTL field, correct the checksum, pass ESP trailer processing,

pass AH processing, and finally generate an ICMP message. Clearly, for each suc-

cess in this endeavour, the attacker can extract 2 or 1 plaintext bytes (depending

on whether the rightmost bytes are being targeted or not), and must move on to a

77

4.3 The Attacks

new base packet with a fresh sequence number for each success.

For an assumed inner TTL field of, say 0xFF, an average of 6.25×216 trials are needed

to extract the rightmost 2 bytes of any block, and an average of 6.25 × 28 trials

for each byte thereafter. Extracting each block of plaintext requires the attacker

to have gathered 16 IPsec-protected packets with roughly increasing AH sequence

numbers, and also to block other traffic on the VPN while the attack is in progress.

If nothing is assumed about the starting TTL value, then the attacker would first

conduct a reconnaissance phase to ascertain likely TTL values (since only a few

possible different values would be expected, depending on the particular OS involved

and the number of hops between the end host generating the inner packet and

the gateway GA). This would involve testing possible TTL value and checksum

correction masks in a systematic manner in an effort to produce an ICMP response,

with an expected number of 382 trials being needed (assuming the TTL field is

uniformly distributed). Once the likely TTL values have been determined, the attack

can proceed as just described for known TTL values. The attack can still be mounted

without a reconnaissance phase, or with unstable inner TTL field values, but it

becomes rather expensive in terms of the number of packet injections needed.

4.3.3 Attack 3: Fragmentation

In the previous two attacks we endeavoured not to tamper with authenticated por-

tions of payloads, instead making use of intercepted packets that generate some form

of reply at the receiver, or by manipulating portions of the ESP payload that are not

protected by AH. Our third attack adopts a different approach, managing to avoid

the plaintext requirements of the previous two attacks. We now craft packets that

will generate replies whilst completely bypassing AH processing at the receiver. The

basic idea is that, after ESP decapsulation of a crafted packet, the receiver discovers

that the ESP payload contains only a fragment of the packet that was originally

protected by AH; since AH’s MAC cannot be verified unless the receiver has the

complete packet, the MAC check will not occur and AH will enter a state in which

it waits for further fragments. Eventually, this state will time-out, and generate an

error message that is detected by the adversary.

78

4.3 The Attacks

Attack 3, Step 1 We begin with a one-time preparation step. Suppose the

attacker captures an arbitrary IPsec-protected packet intended for GB. The attacker

can manipulate bits in the ID field and the MF and DF bits by flipping bits in the

IV of the CBC-mode ciphertext after the ESP header, with the effect of turning the

inner packet (that is still protected by AH) into something that is interpreted by the

receiver as a fragment. Here, we need to set the MF bit, possibly unset the DF bit,

and then use the ID field to compensate the checksum, as discussed in Section 4.2.2.

(Alternatively, we can manipulate the fragment offset and ID fields with similar

results.) This can be done even for a block cipher having a 64-bit block, and with a

small number of trial masks to determine how to flip bits in the IV. In fact, because

of the specific bit flips involved, at most 17 trial packets are needed. This is because

for a single bit flip in the IP header, there correspond 17 possible masks, of which

only one will result in a valid checksum. The attacker injects all the trial packets in

rapid succession, then waits. All the packets will be successfully processed by ESP

at GB, where all but one will have incorrect checksums and be dropped silently by

the gateway. The one that has a correct checksum will be interpreted as a fragment,

so IPsec will wait for the arrival of further fragments in an attempt to reassemble

the original packets before any further AH processing takes place at GB. Eventually,

because the further fragments never arrive, the first remaining fragment provokes

the production of an ICMP fragment reassembly time exceeded message (of type

11 and code 1) in the reverse direction on the VPN between GA and GB, as per

Section 3.1. Because of the predictability of the time-out interval, the attacker can

correlate the time of appearance of this packet with the time of injection of the

trial packets to determine exactly which trial packet was the first one with a correct

checksum. This trial packet will be the attacker’s carrier packet for the second step

in the attack. Note that, whenever this packet is injected into the network towards

GB, it will eventually produce an ICMP response after a suitable time-out period.

Attack 3, Step 2 Now that the preparation phase is complete, the attacker has

a carrier packet that can be used to create an ESP trailer oracle. This step works

largely as before: the attacker splices blocks r, c∗i onto the end of the carrier packet

for different values r, starting with the 216 variants in the rightmost 2 bytes of r.

Here c∗i is any target block. He injects these 216 trial packets into the network

towards GB, looking for an ICMP message in the reverse direction. He correlates

79

4.3 The Attacks

the appearance time of the ICMP message with the injection time of trial packets in

order to identify the value of r which led to the ICMP message being produced, again

using the predictable nature of the fragmentation time-out. The packet with this

value of r must have passed ESP processing, indicating that its trailer field ended

with the bytes 00,04. From this, the rightmost 2 bytes of c∗i can be deduced in the

usual way. The attacker now continues to extract bytes further to the left, again by

modifying r, creating trial packets, injecting them and correlating the appearance

time of the ICMP message with the injection time of trial packets to identify the

successful value of r. Each subsequent plaintext byte that is extracted needs the

injection of 28 trial packets.

The modifications made to the inner packet in this attack do not cause any problems

for AH processing, because the attack bypasses this processing. In this sense, the

attack exploits the non-atomic nature of IPsec processing, and the complexities

arising from IPsec needing to support IP fragmentation. It works for 64-bit and

128-bit ciphers (using the fact that checksums can be corrected by manipulating the

ID field for the 64-bit case). It has no known or chosen plaintext requirements and

extracts complete plaintext blocks. Its only disadvantage is that, no matter how

fast the attacker can inject the (roughly) 216 trial packets needed, he must wait for

the IP fragmentation time-out after each pair of bytes/individual byte. As noted

previously, this time-out is recommended to be 60-120 seconds, though it is only 15

seconds in the OpenSolaris implementation. This, then, is the limiting factor for the

rate at which the attacker can extract plaintext.

Attack 3 with AH replay protection enabled The key feature of this attack

is that AH processing is bypassed altogether. Thus, the carrier packet created in

step 1 of the attack continues to produce IP fragmentation time-outs even when

used repeatedly in step 2. So, in this case, enabling AH replay protection does not

present any additional barrier to the attack. In fact this attack is much easier to

mount than our first two attacks when AH replay protection is enabled, because it

has no chosen plaintext assumptions, only a single packet is needed in the attack,

no control over the traffic flow is needed, and it avoids the complications required

to implement the previous attacks without disrupting the traffic flow.

80

4.4 Attacking Other Configurations

4.4 Attacking Other Configurations

Having given a detailed discussion of three different attack types against the ‘AH

Transport + ESP Tunnel’ configuration, we move on to other configurations in which

AH is followed by encryption-only ESP. We omit discussion of ‘ESP (auth only) +

ESP (enc only)’ configurations: since the scope of AH’s integrity protection is always

greater than that of ESP, it is easy to see that any attack against some ‘AH + ESP’

configuration will also apply to the corresponding ‘ESP (auth only) + ESP (enc

only)’ configuration.

AH Tunnel + ESP Tunnel: In this configuration the IPsec-protected packets

now contain a total of 3 IP headers, since the tunnel processing is applied twice.

Here, Attacks 1 and 3 still work with simple modifications, but Attack 2 does not,

since the TTL field that needs to be manipulated is the one in the innermost IP

header, and this is protected by AH (and cannot be reached from ESP’s IV any

more).

AH Tunnel + ESP Transport: Here, Attack 2 does not work, since this attack

needs to manipulate fields in the inner IP header which can no longer be reached

from ESP’s IV because of the intervening AH bytes. In Attack 3 we forge an ESP

datagram whose payload contains only a fragment of an AH-authenticated IP packet.

This is only allowed to happen when ESP is in tunnel mode; in fact there is no way

of indicating such an instance when ESP in transport mode is used. As such, Attack

3 cannot be mounted either.

Attack 1 requires some extra assumptions to make it work in this configuration.

Firstly, the ‘expected’ value of the NH byte in the ESP trailer is 51, indicating AH

as the next protocol, rather than 04 as before. However, it may be that more byte

values are accepted here by IPsec processing, depending on how liberal the IPsec

policies are at the gateway. This increases the success probability when extracting

the rightmost 2 bytes, but may leave some uncertainty about the exact value of the

rightmost byte of the recovered plaintext block. In practice, only 51 for the NH

byte will lead to the production of a response message, since other values will lead

81

4.4 Attacking Other Configurations

to the AH data bytes being misinterpreted as coming from a different upper layer

protocol, and the data will most likely not be correctly formatted for that protocol.

Secondly, the attacker relies on ESP processing at GB to interpret the original data

in the ESP trailer and some of the bytes in the spliced blocks r, c∗i as being TFC

padding, and to be able to remove these bytes before submitting the resulting packet

to AH processing. For, otherwise, the packet would contain extra bytes and these

would cause the AH MAC verification to fail. This requires the ESP implementation

at GB to support TFC padding for transport mode ESP, and to know how to inspect

the AH and the inner IP length fields to calculate how many bytes of data should

remain after TFC padding has been removed. This places greater expectations on the

IPsec implementation, though [62, Section 2.7] states that an IPsec implementation

SHOULD be capable of this behaviour.

AH Transport + ESP Transport Here the IPsec-protected packets will only

contain a single IP header. This configuration was explicitly ruled out in the previ-

ous IPsec architecture [65], and so is not supported by some implementations (e.g.

OpenSolaris) but is by others (e.g. Linux). Here Attack 2 fails because there is no

inner IP header to manipulate, and Attack 3 does not work, since ESP is in transport

mode.

Attack 1 requires some modification in order to work. As with the previous attack,

the NH byte in ESP trailer is now expected to have value 51, and the attacker must

rely on ESP processing at GB to accurately handle TFC padding. This requires

the ESP implementation at GB to support TFC padding for transport mode ESP

and the upper layer protocol to include an explicit length field, ruling out the use

of TCP in the payload of the carrier packet. This means that we are restricted to

using ICMP (or perhaps some kind of UDP packet that always produces a response).

Otherwise, the attack works as described previously.

82

4.5 Experimental Results

4.5 Experimental Results

Having described how our attacks should operate for an RFC-compliant implemen-

tation of the RFCs, we now turn to their experimental validation.

Our experimental set-up is composed of two desktop machines acting as the two

stand-alone gateways, a laptop acting as the attacker’s platform, and a 10 Mbit Hub.

The gateways run OpenSolaris build 134, whereas the attacker’s platform runs Linux

2.6. We implemented our attacks in Python 2.6.4 and used the Scapy 2.0 library

to intercept and manipulate IP packets and to re-inject them into the network. We

decided to use OpenSolaris because it can be configured to perform full padding

checks on ESP-protected packets as recommended by [62]. In our experiments, the

two gateways were configured to protect their communications using AH in transport

mode followed by ESP in tunnel mode, as in the example configuration of Section

4.3. We have not tested our attacks on the other MAC-then-encrypt configurations,

but we see no reason why they should not be successful.

We successfully implemented Attacks 1 and 3 on the aforementioned configuration,

with the AH replay protection service both disabled and enabled. In OpenSolaris,

when keys are set up manually, then replay protection is disabled and there is no

way of enabling it (in conformance with [65]). Thus we used manual keying for the

scenario where replay protection is disabled, and enabled automated key exchange

using IKE in order to turn on the replay protection service. Attack 2 works by

generating an ICMP message at the point where the IPsec gateway is about to

forward the decrypted packet to the end host in the protected network. As mentioned

above, this attack works only when AH is applied in transport mode followed by

ESP in tunnel mode. However we discovered that in OpenSolaris, it is not possible

to forward packets that are protected by AH in transport mode, preventing us from

testing Attack 2 in our experimental set-up. This seems to be a design decision by

the OpenSolaris developers: such configurations are perfectly in line with the IPsec

RFCs.

All of our attacks rely on the production of ICMP messages, so one might be con-

cerned about the effects of ICMP rate limitation. However, this is not an issue in

practice because of the relatively slow speed at which the ICMP packets are pro-

83

4.5 Experimental Results

duced. In fact the main complication that arises in practice for our attacks is the

problem of distinguishing the desired response packets from other IPsec-protected

traffic on the VPN. This of course depends on the amount of traffic present on the

network. As a first step, if the attacker is able to predict the length of the response

packet, then he can filter out all packets whose length does not match this value,

and thereby significantly reduce the rate of false positives. If length filtering is not

enough or not possible, then one can filter on the basis of ‘causation’: assuming

no network congestion, a response is expected to be seen almost instantly after the

packet that caused it was received by the gateway. That is, with sufficiently high

probability, the attacker can expect to observe the response within a short time in-

terval of the packet having a correct ESP trailer being sent. The time interval should

be short enough that the probability of a false positive appearing within the interval

is low. Thus the attacker allows a time interval δ between each attack packet that

he sends. Once the attacker has detected what he suspects to be a response packet,

he can confirm that this was indeed the case by retesting and checking whether a

response is again sent within time δ (this will require the use of a fresh carrier packet

whenever replay protection is enabled). This can be repeated multiple times in or-

der to boost the confidence of the detection procedure. Thus in scenarios with high

network traffic levels, the attacks may still be realised at the expense of efficiency.

Alternatively, if replay protection is disabled or Attack 3 based on fragmentation is

used, the attacker can simply capture the packets that are of interest to him and

wait for a period of low network traffic in order to carry out his attack.

In our set-up we had minimal spurious network traffic and thus basic filtering based

on packet lengths was sufficient. The most computationally intense part of each

attack is to extract the rightmost two bytes of the target ciphertext block. Given

that we could distinguish a response packet from other traffic accurately enough, we

adopted the following strategy in order to speed up the Attack 1: we transmitted all

216 packets at a rate almost equal to the network’s capacity. As soon as a response

packet was detected, we replayed the last few packets spaced at a greater interval, in

order to pinpoint the exact packet which generated the response. We also followed

this approach in order to extract the rest of the bytes. On a 10Mbit hub, Attack

1 took on average 70 seconds to recover a 128-bit block of plaintext using a 140-

byte carrier packet. It should be noted that if replay protection is enabled, then

Attack 1 needs 30 fresh packets to recover a block of plaintext in the manner just

84

4.6 Summary

described. On the other hand it is possible to sacrifice the attack’s time efficiency

by transmitting packets at a lower rate such that a packet generating a response can

be immediately identified, thereby requiring only 15 fresh packets per 128-bit block

of plaintext.

For Attack 3, a similar strategy was adopted. Now the oracle response is only output

after the IP fragment reassembly has timed out. In OpenSolaris the default time-out

value is 15 seconds. In order to match a response to the packet that generated it,

we keep a list of the time instants at which each packet was sent. Then if a response

is seen at some time t we search our list for packets that were sent near to the time

t − ttime-out. This scheme was combined with the method described above where

packets are initially sent in a burst, and then two replies are required to accurately

locate the packet generating the response. In our experiments, we could locate the

packet to lie within a range of roughly 20 packets with the first response, and then

replay each packet at intervals of 0.2 seconds and use the second response to locate

the desired packet exactly. Following this approach with our experimental set-up

Attack 3 recovered a 128-bit block of plaintext in roughly 10 minutes.

4.6 Summary

We have demonstrated attacks against all MAC-then-encrypt configurations of IPsec.

These show that such configurations should be avoided in IPsec deployments. We

have not found any attacks against encrypt-then-MAC configurations of IPsec.

Our attacks demonstrate the dangers inherent in exposing cryptographic flexibility

to users. IPsec in particular places a significant burden on network administrators,

requiring them to have sufficient cryptographic expertise in order to select secure

configurations. Nothing prevents curious administrators from going “off piste” or

protects them from bad advice, such as that to be found in [39, 40, 92] for exam-

ple. We hope that the attacks given here will illustrate some of the dangers in an

accessible form.

Our view of IPsec echoes that expressed in [39]: IPsec, in attempting to be “all things

to all men” ends up compromising on security. It would be helpful to standardise

85

4.6 Summary

IPsec profiles addressing particular application scenarios rather than allowing a set

of components that can be combined and configured in different ways to achieve

arbitrary goals. This is because predicting the combined security of distinct crypto-

graphic primitives is quite difficult and requires thorough analysis. While theoretical

cryptography has much that is useful to say on this subject [17, 69], it currently falls

short of being able to give truly meaningful security guarantees for cryptographic

primitives as they are deployed in real protocols. The focus of the next chapters is

to address this gap between theory and practice.

86

Chapter 5

Distinguishable Decryption Failures

Contents

5.1 Motivation . 87

5.2 The Multiple-Error Setting 90

5.3 Relations and Separations 97

5.3.1 Preliminary Note. 97

5.3.2 Straightforward Relations. 98

5.3.3 Revisiting Classic Relations. 98

5.3.4 New Relations. 102

5.3.5 Necessity of Strong Ciphertext Integrity. 103

5.3.6 More Separations . 108

5.4 Multiple-Error Authenticated Encryption 114

5.5 The Security of Encode-then-Encrypt-then-MAC 118

5.6 Summary . 123

In this chapter we consider security models for symmetric encryption where an ad-

versary can distinguish among distinct decryption failures. Our main purpose is to

build models that better reflect the reality of cryptographic implementations, and to

surface the security issues that arise from doing so.

5.1 Motivation

Encryption schemes meeting strong notions of security typically introduce redun-

dancy into their ciphertexts, and as a consequence ciphertexts may be deemed in-

valid during decryption. A scheme’s correctness ensures that honestly generated

ciphertexts will always decrypt correctly, hence we expect decryption to ‘fail’ only

87

5.1 Motivation

for ciphertexts that are corrupted during transmission or are adversarially gener-

ated. Typically, protocols making use of an encryption scheme report decryption

failures to the sender through error messages, and thus the fact that a decryption

failure has occurred becomes known to the adversary. After Bleichenbacher’s at-

tack on RSA PKCS#1 [21], it became recognised in the academic community that

these decryption failures (and the attendant error messages) may leak significant in-

formation to an adversary, undermining schemes’ confidentiality properties. Other

examples in the asymmetric setting were subsequently discovered [52, 71] and called

reaction attacks. In a very broad sense, Vaudenay’s padding oracle attack that we

described in Section 3.4 can be seen as an adaptation of Bleichenbacher’s attack to

the symmetric setting. Vaudenay’s ideas were later extended to produce significant

attacks against (among others) SSL/TLS [27, 78, 3], IPsec [29, 30], ASP.NET [37],

XML encryption [57] and DTLS [2]. The SSH attack by Albrecht, Paterson, and

Watson from Section 3.5 also depends in a crucial way on the error messages that

are returned by the receiver during decryption.

At a very high level the above-mentioned attacks on symmetric schemes have the

common feature that during decryption some information about the plaintext is

leaked, due to error messages, their timing, or some other aspect of the implementa-

tion. The leaked information is normally quite small, and the power of these attacks

really comes from the adversary’s ability to amplify this leakage through iteration.

That is, given a target ciphertext, an adversary is able to produce a sequence of re-

lated ciphertexts which when decrypted will leak more information about the target

plaintext. If we now compare this to the IND-CCA security model, it appears that

such attacks should be fully accounted for and prevented, given the very conserva-

tive approach adopted in this model. Indeed, in the IND-CCA model, the adversary

is given full access to a decryption oracle to which it can query any ciphertext ex-

cept the target ciphertext, and learns either the corresponding plaintext or the fact

that decryption fails; and yet this should not leak any information about the target

plaintext. Thus if a scheme is IND-CCA-secure, the only information an adversary

can gather from a ciphertext is the information leaked during the decryption of that

same ciphertext. That is, an adversary is not able to amplify the information leakage

through iteration.

The above argument can fail, when information is leaked through decryption failures,

88

5.1 Motivation

as in the attacks in [27, 3, 29, 30, 2]. The decryption algorithm may perform a variety

of checks while decrypting a ciphertext, and if any of these checks fail the ciphertext

will be deemed invalid. Knowing why decryption failed may be more informative to

the adversary than the mere fact that decryption failed. Thus attacks that exploit

distinguishable decryption failures are more powerful than reaction attacks, which

only exploit the knowledge of whether a ciphertext is valid or not. While reaction

attacks are accounted for in the IND-CCA model, the same cannot be said about

distinguishable decryption failure attacks. This is mainly due to the commonly

employed formalism where decryption failures always return the same error message

(⊥), and hence an adversary can learn nothing from invalid ciphertexts in the IND-

CCA model. In contrast, in several of the attacks above, an adversary can recover

the full plaintext without ever querying a valid ciphertext for decryption, which

shows that in practice an adversary can gain information from invalid ciphertexts.

SSL/TLS makes an instructive case study. At a high level, it most commonly uses

a Mac-then-Encrypt (MtE) construction, with either a stream cipher or CBC-mode

encryption of a block cipher as the encryption scheme. Thus SSL/TLS is covered

by Krawczyk’s result [69], and one might reasonably conclude that its symmetric

encryption scheme is IND-CCA secure. Yet Canvel et al. [27] presented plaintext-

recovering attacks against the OpenSSL implementation of SSL/TLS when CBC-

mode is used, in which the attacker does nothing other than submit certain cipher-

texts for decryption and analyse the results (i.e. the attacker ostensibly operates

within the IND-CCA model). The key point, however, is that at the time of Canvel

et al.’s attacks in 2003, it was possible to discern whether decryption had failed

because the underlying padding needed by CBC-mode was incorrectly formatted or

because of a MAC failure. This was possible because they were indicated by different

error messages, which even though they were encrypted, were produced at different

times during the decryption process. This additional information was sufficient to

realise a padding oracle attack, in the style of [93]. Thus, while SSL/TLS may be

provably IND-CCA secure in theory, it turned out not to be in practice. Suitable

countermeasures involve making it hard for an attacker to learn the cause of de-

cryption failures and were incorporated into the TLS specification from version 1.1

onwards. Meanwhile, building an accurate model of SSL/TLS’s symmetric encryp-

tion scheme and proving its security has turned out to be a complex task that was

only recently completed in [78]. Even there, however, it was necessary to assume

89

5.2 The Multiple-Error Setting

that all decryption failures are indistinguishable (since, otherwise, attacks like those

of [93, 27, 2, 3] are possible). A similar story could be told for MAC-then-encryption

configurations of IPsec, to which the theory in [69] and the attacks of Chapter 4 both

apply.

In this chapter we propose to strengthen the existing security definitions for sym-

metric encryption by letting the adversary distinguish various possible decryption

errors. Our main purpose is to build models that better reflect the reality of cryp-

tographic implementations, and to surface the security issues that arise from doing

so. We are not the first to make this relaxation (see, for example, [79, 80]), but we

are the first to systematically explore its consequences, with some surprising con-

sequences for our understanding of symmetric encryption. Our approach requires

the adoption of a slightly different syntax for encryption schemes to the standard

one. Now, our decryption algorithm will either return a message from the message

space, or an error message from a predetermined finite set of values which we refer

to as the error space. Technically, then, encryption schemes with multiple errors

are a slightly different object from single-error schemes. This approach allows us

to handle schemes that can fail in a finite number of distinguishable ways that will

be indicated in practice by different error messages. It also enables us to treat at-

tacks in which indistinguishable error messages are returned (perhaps because they

are all encrypted, as is the case in SSL/TLS), but in which the errors are returned

at a discrete set of times. We note that our approach is equally applicable to the

asymmetric setting; here we will restrict our scope to the symmetric setting only.

5.2 The Multiple-Error Setting

A multiple-error encryption scheme is defined similarly as in Section 2.3.1 with the

following main difference. To a scheme we associate a positive integer n and a set of

symbols S⊥ = {⊥1,⊥2, . . . ,⊥n}. We refer to this set as the error space of the scheme;

it allows the decryption algorithm to indicate invalid ciphertexts with distinct error

messages within the error space. The symbol ⊥ will be used interchangeably to

denote a specific error symbol or a variable assuming values from the error space.

Most of the security notions for symmetric encryption that we presented in Chapter 2

90

5.2 The Multiple-Error Setting

apply equally to multiple-error encryption schemes. Note that in our definitions

the decryption oracle always returns whatever the decryption algorithm outputs, as

opposed to having the experiment return a special symbol if the ciphertext is invalid.

Thus the notions that include a decryption oracle are implicitly strengthened by

permitting the encryption schemes to have more than one error message.

We now introduce two notions of indistinguishability under ciphertext-validity at-

tack, which can be seen as a strengthened adaption of a similar notion defined by

Bauer et al. [7] to the symmetric setting. Here, in addition to an encryption oracle

the adversary is given access to a ciphertext-validity oracle which indicates whether

a ciphertext is valid or not, and if not, returns the exact error message output by

the decryption algorithm.

Definition 5.1: IND-CVA and IND$-CVA. Let SE = (K, E ,D) be a multiple-

error encryption scheme. For an adversary A and a bit b, define experiments

Expind-cva-b
SE (A) and Expind$-cva-b

SE (A) as shown in Figure 5.1. Both experiments

start by calling K to generate a key K and initialise the states. In the former ex-

periment the adversary A is given access to a left-or-right encryption oracle LoR(·),
and in the latter it is given a special encryption oracle Enc$(·) instead. In both

experiments the adversary is additionally given a ciphertext-validity oracle Val(·).
The ciphertext-validity oracle uses to indicate that the queried ciphertext was

valid or has been previously output by the encryption oracle.

In both experiments, the adversary’s goal is to output a bit b′ as its guess of the

challenge bit b, and the experiment returns b′ as well. The corresponding advantages

of an adversary A are given by:

Advind-cpa
SE (A) = Pr

[
Expind-cva-1

SE (A) = 1
]
− Pr

[
Expind-cva-0

SE (A) = 1
]
,

Advind$-cca
SE (A) = Pr

[
Expind$-cva-1

SE (A) = 1
]
− Pr

[
Expind$-cva-0

SE (A) = 1
]
.

The scheme SE is said to be IND-CVA (or IND$-CCA) secure, if for every adversary A
with reasonable resources its advantage Advind-cva

SE (A) (respectively Advind$-cva
SE (A))

is small.

91

5.2 The Multiple-Error Setting

Expind-cva-b
SE (A) Expind$-cva-b

SE (A)

(K,σ, %)← K
i← 0, C← ()

b′ ← ALoR(·),Val(·) b′ ← AEnc$(·),Val(·)

return b′

LoR((m0,m1))

if |m0| 6= |m1| then return
(c, σ)← EK(mb, σ)
i← i+ 1, Ci ← c
return c

Enc$(m)

(c, σ)← EK(m,σ)

if b = 0 then c←$ {0, 1}|c|
i← i+ 1, Ci ← c
return c

Val(c)

(m, %)← DK(c, %)

if m ∈M if m ∈M or c ∈ C

then m←
return m

Figure 5.1: Experiments to define IND-CVA and IND$-CVA security. For IND-CVA
the boxed code is excluded, whereas for IND$-CVA the boxed code replaces the code
adjacent to it.

It is possible to extend the above two notions to the stateful setting. Interestingly, in

the presence of a left-or-right encryption oracle, the sfVal(·) oracle reduces to a Val(·)
oracle, and therefore IND-sfCVA (defined in the obvious way) would be syntactically

equivalent to the IND-CVA experiment. In the case of indistinguishability from

random bits, an analogous equivalence is not evident from the syntax. We define

this notion below.

Definition 5.2: IND$-sfCVA. Let SE = (K, E ,D) be a multiple-error encryp-

tion scheme. For an adversary A and a bit b, define experiment Expind$-sfcva-b
SE (A)

as shown in Figure 5.2. The experiment starts by calling K to generate a key K and

92

5.2 The Multiple-Error Setting

initialise the states. The adversary A is given access to a special encryption oracle

Enc$(·), and a stateful ciphertext-validity oracle sfVal(·). The stateful ciphertext-

validity oracle returns until the queries become out-of-sync.

The adversary’s goal is to output a bit b′ as its guess of the challenge bit b, and the

experiment returns b′ as well. The corresponding advantage of an adversary A is

given by:

Advind$-sfcva
SE (A) = Pr

[
Expind$-sfcva-1

SE (A) = 1
]
− Pr

[
Expind$-sfcva-0

SE (A) = 1
]
.

The scheme SE is said to be IND$-sfCVA secure, if for every adversary A with

reasonable resources its advantage Advind$-sfcva
SE (A) is small.

Expind$-cva-b
SE (A)

(K,σ, %)← K
i← 0, j ← 0
C← (), sync← 1

b′ ← AEnc$(·),sfVal(·)

return b′

Enc$(m)

(c, σ)← EK(m,σ)

if b = 0 then c←$ {0, 1}|c|
i← i+ 1, Ci ← c
return c

sfVal(c)

j ← j + 1
(m, %)← DK(c, %)
if j > i or c 6= Cj

then sync← 0
if sync = 1 or m ∈M

then m←
return m

Figure 5.2: Experiment to define IND$-sfCVA security.

93

5.2 The Multiple-Error Setting

We now turn our attention to integrity of ciphertexts, as defined in Section 2.4

and its stateful variant in Section 2.5. When extending these notions to schemes

with multiple errors, some ambiguity arises as to how to interpret the try oracle’s

functionality. That is, should the try oracle indicate only whether a ciphertext is

valid or not, or should it additionally return the exact error message output by the

decryption algorithm if the ciphertext is invalid? While the syntax of our definitions

from Chapter 2 conforms to the latter interpretation, formulations conforming to

the former interpretation are also common in the literature. For single-error schemes

the two interpretations are equivalent, but as we shall see in the next section this

does not hold in general. For each of the standard and stateful notions we consider

both variants and we denote the weaker variant (i.e. the one that is less informative

to the adversary) with ‘∗’.

Definition 5.3: Ciphertext Integrity in the Multiple-Error Setting. Let

SE = (K, E ,D) be a symmetric encryption scheme. For an adversary A define the

experiments Expint-atk
SE (A) for ATK ∈ {CTXT,CTXT∗, sfCTXT, sfCTXT∗} as shown

in Figure 5.3. The experiments start by calling K to generate a key K and initialise

the states. The adversary A is then given access to an encryption oracle Enc(·),
and either a try oracle Try(·) or a stateful try oracle sfTry(·). The output of Try(·)
is suppressed with in the event that the queried ciphertext is valid or if it has

been previously output by the encryption oracle. Similarly, the output of sfTry(·)
is suppressed if the queried ciphertext is valid or in-sync. In the ‘∗’ variants, error

messages are masked with ⊥, and thus made indistinguishable to the adversary.

The adversary’s goal is to make a valid query not previously output by the encryption

oracle, or in the stateful case, a valid out-of-sync query. For each experiment, the

adversary’s advantage is defined as:

Advint-atk
SE (A) = Pr

[
Expint-atk

SE (A) = 1
]
.

The scheme SE is said to be INT-ATK secure, if for every adversary A consuming

reasonable resources, its advantage Advint-atk
SE (A) is small.

Although an encryption scheme may have multiple error messages, not all error

messages may be ‘available’ to the adversary. In particular an adversary may not be

94

5.2 The Multiple-Error Setting

Expint-ctxt
SE (A) Expint-ctxt∗

SE (A)

(K,σ, %)← K
i← 0, C← ()
win← 0

AEnc(·),Try(·)

return win

Enc(m)

(c, σ)← EK(m,σ)
i← i+ 1, Ci ← c
return c

Try(c)

(m, %)← DK(c, %)
if c 6∈ C and m 6∈ S⊥

then win← 1
if m 6∈ S⊥ then m←
else m←⊥
return m

Expint-sfctxt
SE (A) Expint-sfctxt∗

SE (A)

(K,σ, %)← K
i← 0, j ← 0, C← ()
sync← 1,win← 0

AEnc(·),sfTry(·)

return win

Enc(m)

(c, σ)← EK(m,σ)
i← i+ 1, Ci ← c
return c

sfTry(c)

j ← j + 1, (m, %)← DK(c, %)
if j > i or c 6= Cj

then sync← 0
if sync = 0 and m 6=⊥

then win← 1
if m 6∈ S⊥ then m←
else m←⊥
return m

Figure 5.3: Experiments to define ciphertext integrity in the multiple-error setting.
For INT-CTXT and INT-sfCTXT the boxed code is excluded, whereas for INT-CTXT∗

and INT-sfCTXT∗ the boxed code replaces the code adjacent to it.

able to produce (invalid) ciphertexts that generate all possible error messages. We

introduce a simple security notion that captures exactly this situation. Informally

an encryption scheme is error-invariant if no efficient adversary can generate more

than one of the possible error messages. Of course any single-error scheme is trivially

error invariant.

Definition 5.4: INV-ERR security. Let SE = (K, E ,D) be a symmetric en-

cryption scheme with error space S⊥. For any ⊥∈ S⊥ and an adversary A, define

the experiment Expinv-err
SE,⊥ (A) as shown in Figure 5.4. A key K is first generated by

calling K . The adversary A is then given access to an encryption oracle Enc(·) and

a decryption oracle Dec(·).

95

5.2 The Multiple-Error Setting

Expinv-err
SE,⊥ (A)

(K,σ, %)← K
win← 0

AEnc(·),Dec(·)

return win

Enc(m)

(c, σ)← EK(m,σ)
return c

Dec(c)

(m, %)← DK(c, %)
if m ∈ S⊥ and m 6=⊥

then win← 1
return m

Figure 5.4: INV-ERR experiment for symmetric encryption schemes.

The adversary’s goal is to submit a ciphertext to the decryption oracle which results

in an error message not equal to ⊥ . The experiment outputs a bit indicating the

adversary’s success. We define the advantage of an adversary A with respect to ⊥
as:

Advinv-err
SE,⊥ (A) = Pr

[
Expinv-err

SE,⊥ (A) = 1
]
.

The scheme SE is said to be INV-ERR secure if there exists a unique ⊥∈ S⊥ such

that for every adversary A with reasonable resources its advantage Advinv-err
SE,⊥ (A) is

small.

Finally we will also consider message authentication schemes that return multiple

errors. Similarly this requires replacing the role of the error message ⊥ with a set

of error messages Q⊥ = {⊥1,⊥2, . . . ,⊥n}. The UF-CMA and SUF-CMA security

notions that we presented in Section 2.2.2 are thus automatically strengthened by

permitting the message authentication schemes to return more than one error mes-

sage. We do not consider the weaker variant (analogous to the ∗ variant for integrity

of ciphertexts) where the adversary only returns whether a message-tag pair is valid

or not.

96

5.3 Relations and Separations

5.3 Relations and Separations

5.3.1 Preliminary Note.

An implication from security notion X to security notion Y, indicated by X −→ Y,

means that any scheme which is X-secure is also Y-secure. More formally there

exists a constant κ > 0 such that for any symmetric encryption scheme SE and any

Y adversary Ay there exists a X adversary Ax (consuming similar resources) such

that:

Advy
SE(Ay) ≤ κ ·Advx

SE(Ax)

A separation from security notion X to security notion Y indicated by X 6−→ Y, means

that there exists an encryption scheme which meets notion X but for which we can

exhibit an attack showing that it does not meet notion Y. The separation is interest-

ing only if there exists some scheme which meets security notion X, as otherwise the

implication X −→ Y is vacuously true. Our separations can be categorised into two

types. In the former we will assume that there exists some scheme SE which meets

notion X, and use it to construct a scheme SE which meets notion X but is insecure

in the Y sense. From the foregoing discussion, such an assumption is in some sense

minimal. In the second type of separations we will assume the existence of pseudo-

random functions and UF-CMA MACs to construct a scheme which meets notion X

but not notion Y. In this paper for all separations of the latter type we will have

that X −→ IND-CPA. It is a well-known result that the existence of IND-CPA-secure

symmetric encryption implies the existence of pseudorandom functions [56, 53, 48].

In addition a pseudorandom function can be combined with an almost-universal

hash function to obtain a variable-input-length pseudorandom function, which in

turn yields a UF-CMA MAC. Thus from a theoretical viewpoint the underlying as-

sumptions for either type of separation are equivalent.

Note that when proving a separation we do not require the scheme to have distinct er-

ror messages, as we are interested solely in the existence of a counterexample showing

that the relation under question cannot be established. Secondly any multiple-error

scheme which is secure under some notion X implies the existence of a single-error

scheme which is also secure under notion X (simply by mapping all error messages to

a single error message). Consequently it is best to prove separations using schemes

97

5.3 Relations and Separations

with an error space of minimal cardinality. It then follows that the separation also

holds for all schemes of higher error-space cardinality.

5.3.2 Straightforward Relations.

In the previous section we explained how the standard security notions can be

extended to the multiple-error setting and introduced new ones. Proposition 5.1

depicts some basic relations between these security notions. These relations are

self-evident and we state them without proofs.

Proposition 5.1.

IND-sfCCA // IND-CCA // IND-CVA // IND-CPA

IND$-sfCCA //

//

IND$-CCA // IND$-CVA // IND$-CPA

IND$-sfCVA

OO

INT-sfCTXT //

//

INT-CTXT // INT-CTXT∗

INT-sfCTXT∗

OO

5.3.3 Revisiting Classic Relations.

If a single-error symmetric encryption scheme satisfies both passive confidentiality

(IND-CPA) and integrity of ciphertexts (INT-CTXT), then Theorem 2.2 guarantees

that it also offers confidentiality against chosen-ciphertext attacks. Theorem 2.3 ex-

tends this result to the stateful setting. Often, when analysing a particular scheme,

its chosen-plaintext security and ciphertext integrity are proved first, and then these

classic results are used to guarantee chosen-ciphertext security. Indeed, the combi-

nation of IND-CPA and INT-CTXT (or their stateful versions) has come to be the

accepted security notion for authenticated encryption. We proceed to re-examine

these relations in the context of multiple-error encryption schemes.

98

5.3 Relations and Separations

The following theorem serves as the basis for the two separations in Corollaries 5.3

and 5.4, showing that the classic relations no longer hold for multiple-error schemes.

We point out that in proving the separations, we adopt the stronger interpretations

of ciphertext integrity so as to make the results as strong as possible.

Theorem 5.2: IND-CPA ∧ INT-sfCTXT 6−→ IND-CCA. Let F : Ke × {0, 1}` →
{0, 1}n be a pseudorandom function, and let MA = (Km, T ,V) be a UF-CMA secure

MAC with tag length `tag < n . Consider the stateful symmetric encryption scheme

SE1 having message space {0, 1}n−`tag and error space {⊥0,⊥1} shown in Figure 5.5.

For any IND-CPA adversary Acpa and any INT-sfCTXT adversary Aint against SE1,

both making at most 2` − 1 encryption queries, there exist two corresponding adver-

saries Aprf and Auf using roughly the same resources as Acpa and Aint, respectively,

such that:

Advind-cpa
SE1 (Acpa) ≤ 2 ·Advprf

F (Aprf) , (5.1a)

Advint-sfctxt
SE1 (Aint) ≤ Advuf-cma

MA (Auf) . (5.1b)

Moreover there exist efficient adversaries Acca and A′uf such that:

Advind-cca
SE1 (Acca) = 1−Advuf-cma

MA (A′uf) . (5.1c)

Proof. The correctness of the constructed scheme is easy to verify and we therefore

proceed to prove the first part of the theorem. For any adversary Acpa, making at

most 2` − 1 encryption queries, we construct Aprf as follows. Adversary Aprf runs

Km to get a key for the MAC, it then runs Acpa and provides it with a simulation

of its left-or-right encryption oracle. Essentially Aprf selects a uniformly random bit

d and uses its own oracle together with its MAC key to encrypt md according to

the construction in Figure 5.5, where the pseudorandom function is replaced by its

own oracle. Finally, if Acpa’s output is equal to d, then Aprf outputs 1 otherwise

it outputs 0. Now when Aprf’s oracle is instantiated with F it provides Aprf with

a perfect simulation of the IND-CPA experiment. On the other hand when Aprf’s

oracle is a random function, the ciphertexts returned to Acpa provide no information

99

5.3 Relations and Separations

Algorithm K

Ke ←$Ke
Km ← Km
σ ← 1, %← 1
K ← Ke ‖ Km

return (K,σ, %)

Algorithm EK(m,σ)

τ ← TKm(〈σ〉` ‖ m)
c← FKe(〈σ〉`)⊕ (m ‖ τ)
σ ← σ + 1 mod 2`

return (c, σ)

Algorithm DK(c, %)

if |c| 6= n then %← 0
if % = 0 then

return (⊥0, %)
w ← FKe(〈%〉`)⊕ c
parse w as m ‖ τ
v ← VKm(〈%〉` ‖ m, τ)
if v = valid

then %← %+ 1 mod 2`

else
%← 0
if m[1] = 0 then

m←⊥0

else m←⊥1

return (m, %)

Figure 5.5: The scheme SE1 of Theorem 5.2.

about d, i.e. d is information-theoretically hidden. Therefore we have that:

Advprf
F (Aprf) = Pr

[
Ke ←$Ke : AFKe (·)

prf = 1
]
− Pr

[
f ←$ Func(`, n) : Af(·)

prf = 1
]

= Pr
[
d←$ {0, 1} : Expind-cpa-d

SE1 (Acpa) = d
]
− 1

2

=
1

2
+

1

2
·Advind-cpa

SE1 (Acpa)− 1

2
=

1

2
·Advind-cpa

SE1 (Acpa) .

Inequality (5.1a) thus follows, and we now prove the second inequality.

For any adversary Aint making at most 2` − 1 encryption queries, adversary Auf

proceeds as follows. It samples a key Ke for the pseudorandom function F and

then runs adversary Aint. It simulates the encryption oracle by using its own tag-

ging oracle and the pseudorandom function under the sampled key. In addition it

also maintains an ordered list of the messages Aint queries to the encryption oracle

together with their corresponding ciphertexts. It then simulates the try oracle as

follows. As long as Aint’s queries are in sync, i.e. they match the ciphertexts in

Auf’s list in the exact same order, it returns . Alternatively consider Aint’s first

out-of-sync query ci, let this be its ith try query. In this case Auf first checks that

|ci| = n and if not it halts, otherwise it computes the XOR of ci and FKe(〈i〉`). It

then parses the result into a message and a tag, prepends the message with the

100

5.3 Relations and Separations

string 〈i〉`, submits it together with the tag to its verification oracle and halts.

Note that due to the scheme’s construction Aint can only win within its first 2`− 1

try queries. Since we are interested in bounding its advantage we only need to

consider the case where i ≤ 2`−1 . Now Auf provides Aint with a perfect simulation

of the INT-sfCTXT experiment until Aint makes its first out-of-sync try query, at

which point Aint will either win or lose the experiment (again due to the scheme’s

construction). Moreover because Auf’s only verification query corresponds to an out-

of-sync query and Aint can only make at most 2` − 1 encryption queries, it follows

that the message prepended with 〈i〉` could not have been previously queried by Auf

to its tagging oracle. Thus whenever Aint wins Auf also wins, and inequality (5.1a)

follows.

We conclude the proof by describing adversary Acca which breaks the IND-CCA

security of SE1. The adversary submits (0 ‖ 0n−`tag−1, 1 ‖ 0n−`tag−1) to the left-or-

right oracle and gets in return a ciphertext c∗. It then submits c∗ ⊕ (0n−`tag−1 ‖1)

to the decryption oracle. If the decryption oracle returns ⊥0 then Acca outputs 0,

otherwise it outputs 1. Due to the scheme’s construction, this adversary will always

win except for the case where the decryption oracle returns m 6∈ {⊥0,⊥1}. However

this would imply a MAC forgery. Adversary Acca can then be easily transformed

into a UF-CMA adversary A′uf against MA such that equation (5.1c) holds.

Combining Theorem 5.2 and Proposition 5.1 yields the desired separations.

Corollary 5.3: IND-CPA ∧ INT-CTXT 6−→ IND-CCA. Let F : Ke × {0, 1}` →
{0, 1}n be a pseudorandom function, and let MA = (Km, T ,V) be a UF-CMA secure

MAC with tag length `tag < n . Then there exists a symmetric encryption scheme

that is both IND-CPA secure and INT-CTXT secure but that is not secure in the

IND-CCA sense.

Corollary 5.4: IND-CPA ∧ INT-sfCTXT 6−→ IND-sfCCA. Let F : Ke × {0, 1}` →
{0, 1}n be a pseudorandom function, and let MA = (Km, T ,V) be a UF-CMA secure

MAC with tag length `tag < n . Then there exists a symmetric encryption scheme

that is both IND-CPA secure and INT-sfCTXT secure but that is not secure in the

101

5.3 Relations and Separations

IND-sfCCA sense.

Note that in proving Theorem 5.2 we resorted to a stateful scheme. Only a stateful

scheme can be INT-sfCTXT secure, and therefore the counterexample used to prove

Corollary 5.4 needs to be stateful. The same cannot be said however about the

separation in Corollary 5.3, and in fact it can be proven more generally using a

stateless scheme, but we omit the details for the sake of brevity.

5.3.4 New Relations.

We now go on to investigate how chosen-ciphertext security can be obtained in

the multiple-error setting. Given how useful Theorem 2.2 and Theorem 2.3 have

turned out to be, it would make sense to attempt to derive analogous relations that

hold more generally. The following theorem extends the relation of Theorem 2.2 to

schemes with multiple errors.

Theorem 5.5: IND-CVA ∧ INT-CTXT −→ IND-CCA. Let SE = (K, E ,D) be a

symmetric encryption scheme. For any IND-CCA adversary Acca there exist adver-

saries Acva and Aint consuming similar resources to Acca such that:

Advind-cca
SE (Acca) ≤ Advind-cva

SE (Acva) + 2 ·Advint-ctxt
SE (Aint) . (5.2)

Proof. To any IND-CCA adversary Acca we can associate an IND-CVA adversary

Acva and an INT-CTXT adversary Aint . Both Acva and Aint operate by running

Acca, and then attempt to simulate its environment as follows. Adversary Acva

forwards Acca’s left-or-right queries to its own left-or-right oracle, and forwards

decryption queries to its validation oracle. If the ciphertext turns out to be invalid it

returns the error message to Acca, otherwise it aborts. It then outputs whatever Acca

outputs. Adversary Aint picks a bit uniformly at random, and uses this together with

its encryption oracle to simulate Acca’s left-or-right oracle. It forwards decryption

queries to its verification oracle and returns any error messages back to Acca.

Let W represent the event Expind-cca-b
SE (Acca) = b where b is picked uniformly at

102

5.3 Relations and Separations

random. Let E represent the event that Acca makes a valid decryption query. We

then have that:

Pr [W] = Pr
[
W ∧ E

]
+ Pr [W ∧ E]

≤ Pr
[
W ∧ E

]
+ Pr [E] .

We now bound each of the terms on the right-hand side of the last inequality. Note

that Aint simulates Acca’s environment perfectly until the point where Acca makes a

valid decryption query. Thus it follows that whenever E occurs, Aint wins the INT-

CTXT experiment. On the other hand if E does not occur, then Acva’s simulation

of Acca’s environment is perfect. Consequently whenever event W ∧E occurs, Acva

wins the IND-CVA experiment. Equation (5.2) follows by combining the above and

noting that:

Advind-atk
SE (A) = 2 · Pr

[
b←$ {0, 1} : Expind-atk-b

SE (A) = b
]
− 1 . (5.3)

A similar relation can be established for stateful chosen-ciphertext security, and each

of these relations can be re-proven for security notions involving indistinguishability

from random bits. We state these relations below.

Proposition 5.6.

IND-CVA ∧ INT-sfCTXT −→ IND-sfCCA

IND$-CVA ∧ INT-CTXT −→ IND$-CCA

IND$-sfCVA ∧ INT-sfCTXT −→ IND$-sfCCA

5.3.5 Necessity of Strong Ciphertext Integrity.

The above relations can be seen as strengthened variants of Theorems 2.2 and 2.3,

where we replaced CPA security with CVA security and adopted the stronger notions

of ciphertext integrity. It is natural to ask whether the left-hand side of each relation

103

5.3 Relations and Separations

can be somehow relaxed. We have seen in Corollaries 5.3 and 5.4 that reverting from

CVA security to CPA security is not an option. However it is not evident whether it

is necessary to require the stronger variants of ciphertext integrity. Theorem 5.7 an-

swers this question by means of a separation, proving that strong ciphertext integrity

is necessary for Theorem 5.5 to hold.

Theorem 5.7: IND-CVA ∧ INT-CTXT∗ 6−→ IND-CCA. Let SE = (K, E ,D) be a

symmetric encryption scheme with a large message space M and an error space

{⊥0}, such that it is both IND-CVA secure and INT-CTXT∗ secure. Let the length

of its ciphertexts be bounded above by 2` for some integer `. Consider the scheme

SE having message space M and error space {⊥0,⊥1} shown in Figure 5.6. For

any IND-CVA adversary Acva making qe left-or-right queries, and any INT-CTXT∗

adversary Aint making qt try queries, there exist adversaries A1
cva, A2

cva, and A1
int

(consuming similar resources to Acva and Aint) such that:

Advind-cva
SE (Acva) ≤ Advind-cva

SE (A1
cva) +

1

2
·Advind-cva

SE (A2
cva) +

qe
|M|

, (5.4a)

Advint-ctxt∗
SE (Aint) ≤ Advint-ctxt∗

SE (A1
int) +

qt
|M|

. (5.4b)

Moreover there exists an adversary Acca, making at most (` + maxm∈M(|m|) + 1)
decryption queries and one left-or-right query such that:

Advind-cca
SE (Acca) = 1 . (5.4c)

The intuition behind the separation is as follows. In the INT-CTXT∗ experiment

the adversary does not get to see the decryption error symbols, whereas in the

IND-CVA experiment he does not get access to the plaintext corresponding to valid

decryption queries. We therefore introduce a weakness in the scheme that can only

be exploited when the adversary has access to both the plaintext and the error

symbols from a decryption oracle. The new scheme is defined such that during

key generation a message from the message space is chosen at random. Encryption

is then redefined such that this particular message always encrypts to the same

ciphertext. If an adversary knows this message it would then be able to distinguish

the left oracle from the right oracle by querying this message twice. The decryption

algorithm is defined so that it leaks the encryption of this message through the

104

5.3 Relations and Separations

Algorithm K

(K,σ, %)← K
m∗ ←$M
(c∗, σ)← EK(m∗, σ)
(m, %)← DK(c∗, %)
K0 ← (K,m∗, c∗)
return (K0, σ, %)

Algorithm EK0(m,σ)

if (m = m∗) then
c← c∗

else
(c, σ)← EK(m,σ)

return (0 ‖ c, σ)

Algorithm DK0(c, %)

parse c as b ‖ c′
if (b = 0) then

if (c′ = c∗) then
m← m∗

else
(m, %)← DK(c′, %)

else
ψ ← 〈|c∗|〉` ‖ c∗
if 〈c′〉−1 ≤ |ψ| then

d← ψ[〈c′〉−1]
m←⊥d

else m←⊥0

return (m, %)

Figure 5.6: The scheme SE of Theorem 5.7.

error symbols. However the adversary needs to decrypt this ciphertext in order to

mount the distinguishing attack just described, and hence this vulnerability is only

exploitable in the IND-CCA game.

Proof. Correctness of the constructed scheme follows easily from the correctness of

the original scheme, and we thus proceed to prove equation (5.4a). Adversary A1
cva

starts by picking a message m∗ uniformly at random from the message space and

computes ψ by querying (m∗,m∗) to its left-or-right oracle. A1
cva also submits c∗ to

its ciphertext-validity oracle to maintain the states of its oracles synchronised and

thereby correctly simulate SE . It then runs Acva and simulates its oracles according

to the construction in Figure 5.6 using its own oracles. Note that A1
cva provides a

perfect simulation to Acva, unless the latter queries m∗. In that case A1
cva aborts

and outputs a bit chosen uniformly at random.

Let W and W 1 represent respectively the events Expind-cva-b
SE (Acva) = b and

Expind-cva-d
SE (A1

cva) = d where b and d are picked uniformly at random. Further-

more let E denote the event that Acva makes an encryption query which includes

105

5.3 Relations and Separations

m∗. We then have that:

Pr
[
W 1

]
= Pr

[
W ∧ E

]
+

1

2
· Pr [E]

Pr
[
W 1

]
− 1

2
· Pr [E] + Pr [W ∧ E] = Pr

[
W ∧ E

]
+ Pr [W ∧ E]

Pr
[
W 1

]
+

1

2
· Pr [E] ≥ Pr [W]

Advind-cva
SE (A1

cva) +
1

2
· Pr [E] ≥ Advind-cva

SE (Acva) . (5.5)

It now remains to bound Pr [E]. Note that (due to the details of SE ’s construction)

Acva can recover the encryption of m∗ from its ciphertext-validity oracle, and conse-

quently we cannot bound Pr [E] using an information-theoretic argument. Instead

we construct adversary A2
cva such that if Acva can do significantly better than what

is information-theoretically possible, then A2
cva breaks the IND-CVA security of SE .

Adversary A2
cva proceeds exactly as A1

cva, except that it computes c∗ by querying

(m+,m∗) to its left-or-right oracle for some message m+ chosen uniformly at ran-

dom. Then if at any point during its runtime Acva queries m∗, A2
cva outputs 1 else

it outputs 0. It then follows that:

Advind-cva
SE (A2

cva) = Pr
[

Expind-cva-1
SE (A2

cva) = 1
]
− Pr

[
Expind-cva-0

SE (A2
cva) = 1

]
≥ Pr [E]− 2qe

|M|
. (5.6)

The second line follows from the fact that by definition A2
cva outputs 1 exactly when

E occurs; whereas in the second experiment A2
cva has no information about m∗ and

hence an information theoretic argument can be applied. Combining equations (5.5)

and (5.6) yields equation (5.4a).

Adversary A1
int picks a message m∗ uniformly at random, computes c∗ using its

encryption oracle, and then queries c∗ to its try oracle to maintain the states syn-

chronised. It then runs Aint and simulates its environment using its own oracles.

Specifically it forwards encryption queries to its own encryption oracle and prepends

the resulting ciphertexts with a 0 bit. If Aint queries m∗ it returns 0 ‖ c∗. As re-

gards try queries, it returns ⊥ for ciphertexts starting with a 1 bit, and for all other

queries it chops off the first bit and forwards the remaining ciphertext to its own

try oracle. This provides Aint with a perfect simulation of its environment. Let

106

5.3 Relations and Separations

Z and Z1 represent respectively the events that Aint and A1
int win the INT-CTXT∗

experiment, and let F represent the event that Aint queries 0‖c∗ to its verification

oracle without querying m∗ to its encryption oracle. We then have that:

Pr [Z] = Pr
[
Z ∧ F

]
+ Pr [Z ∧ F]

≤ Pr
[
Z1
]

+ Pr [F]

Advint-ctxt∗
SE (Aint) ≤ Advint-ctxt∗

SE (A1
int) +

qt
|C|

. (5.7)

The bound on Pr [F] follows from the fact that unless Aint queries m∗ to its encryp-

tion oracle, it has no partial information about c∗. Thus equation (5.4b) follows from

equation (5.7) by noting that |C| is at least as large as |M| (from the correctness of

SE).

We now conclude the proof by describing adversary Acca . Note (from the construc-

tion of SE) that the decryption of 1‖〈i〉` leaks the ith bit of the string ψ = 〈|c∗|〉`‖c∗

through the returned error message. Thus Acca starts by making a series of ` decryp-

tion queries, 1‖〈0〉`, 1‖〈1〉`, 1‖〈2〉`, . . . , 1‖〈`−1〉`, to recover the value |c∗|. It then

makes a second series of decryption queries, 1‖〈`〉`, 1‖〈`+1〉`, . . . , 1‖〈`−1+ |c∗|〉`,
to recover c∗. It can now recover the message m∗ by querying the ciphertext 0‖c∗

to its decryption oracle. Having recovered m∗, it submits the pair (m∗,m◦) to its

left-or-right oracle, where m∗ 6= m◦. If the returned ciphertext is equal to 0‖c∗ the

adversary outputs 0, otherwise it outputs 1. This adversary is always successful,

and hence equation (5.4c) follows.

Note: Theorem 5.7 holds irrespective of whether the scheme SE is stateless or

stateful, and in either case the construction of Figure 5.6 yields a scheme SE that

is correspondingly stateless or stateful. This is the main reason for prepending

ciphertexts with an extra 0 bit during encryption, and for decrypting ciphertexts

starting with a 1 separately. If one is happy to further assume that the scheme SE
is stateless, then a slightly simpler construction is sufficient to prove the separation.

Theorem 5.7 also serves as a separation between INT-CTXT∗ and INT-CTXT, show-

ing that the latter is strictly stronger. Separations similar to that of Theorem 5.7

corresponding to the relations of Proposition 5.6 can also be established.

107

5.3 Relations and Separations

Proposition 5.8.

IND-CVA ∧ INT-sfCTXT∗ 6−→ IND-sfCCA

IND$-CVA ∧ INT-CTXT∗ 6−→ IND$-CCA

IND$-sfCVA ∧ INT-sfCTXT∗ 6−→ IND$-sfCCA

5.3.6 More Separations

We now present a separation showing that IND-CVA is strictly stronger than IND-

CPA. We actually show something slightly stronger, in that the separation also holds

for schemes which are error invariant. This separation further serves to point out

that, even for single-error schemes, Theorem 5.5 does not reduce to the relation of

Bellare and Namprempre from [17].

Theorem 5.9: IND-CPA ∧ INV-ERR 6−→ IND-CVA. Let F : Ke × {0, 1}` →
{0, 1}n be a pseudorandom function, where ` is sufficiently large. Then the sym-

metric encryption scheme SE2 having message space ∪k≥1{0, 1}nk and error space

{⊥} shown in Figure 5.7 is such that, for any IND-CPA adversary Acpa making q en-

cryption queries totalling µ bits of plaintext, there exists a corresponding adversary

Aprf (consuming similar resources to Acpa) with:

Advind-cpa
SE2 (Acpa) ≤ 2 ·Advprf

F (Aprf) +
(µ
n

+ q
)(q − 1

2`

)
. (5.8a)

Moreover there exists an efficient adversary Acva such that:

Advind-cva
SE2 (Acva) = 1 . (5.8b)

Proof. It is easy to verify that the constructed scheme is correct, and since its error

space contains only a single element it is trivially INV-ERR. We therefore proceed

to prove that it is IND-CPA secure. For any adversary Acpa we construct adversary

Aprf as follows. Adversary Aprf selects a uniformly random bit d, runs Acpa and

108

5.3 Relations and Separations

Algorithm K

K ←$Ke
σ ← ε, %← ε
return (K,σ, %)

Algorithm EK(m,σ)

if |m| 6∈ {αn : α ≥ 1}
then return ⊥

p← |m|/n
parse m as m1 ‖ . . . ‖ mp

mp+1 ← 0n, c0 ←$ {0, 1}`
for i← 1 to p+ 1 do

ci ← FK(c0 + i)⊕mi

c← c0 ‖ c1 ‖ . . . ‖ cp+1

return (c, σ)

Algorithm DK(c, %)

if |c| 6∈ {`+ αn : α ≥ 2}
then return ⊥

q ← (|c| − `)/n
parse c as c0 ‖ . . . ‖ cq
for i← 1 to q do

mi ← FK(c0 + i)⊕ ci
if mq 6= 0n then m←⊥
else m← m1 ‖ . . . ‖ mq−1

return (m, %)

Figure 5.7: The scheme SE2 of Theorem 5.9.

simulates its left-or-right encryption oracle. It does so by using its own oracle to

encrypt md according to the construction in Figure 5.7, where the pseudorandom

function is replaced by Aprf’s oracle. Then if Acpa’s output is equal to d, Aprf

outputs 1 otherwise it outputs 0. Note that when Aprf’s oracle is instantiated with

F it provides Aprf with a perfect simulation of the IND-CPA experiment. On the

other hand when Aprf’s oracle is a random function, the ciphertexts returned to Acpa

provide no information about d, unless Aprf’s oracle is queried on the same input

more than once. Let E denote the event that Aprf queries its oracle on the same

input more than once when simulating the left-or-right oracle. We then have that:

Advprf
F (Aprf) = Pr

[
K ←$Ke : AFK(·)

prf = 1
]
− Pr

[
f ←$ Func(`, n) : Af(·)

prf = 1
]

Advprf
F (Aprf) + Pr

[
f ←$ Func(`, n) : Af(·)

prf = 1
]

=

Pr
[
d←$ {0, 1} : Expind-cpa-d

SE2 (Acpa) = d
]

bounding the left-hand side and using equation (5.3) on the right-hand side,

Advprf
F (Aprf) +

1

2
· (1− Pr [E]) + Pr [E] ≥ 1

2
+

1

2
·Advind-cpa

SE2 (Acpa)

Advprf
F (Aprf) +

1

2
· Pr [E] ≥ 1

2
·Advind-cpa

SE2 (Acpa) .

Furthermore it can be shown that (cf. [12, Lemma 10]):

Pr [E] ≤
(µ
n

+ q
)(q − 1

2`

)
.

109

5.3 Relations and Separations

By combining the above we get inequality (5.8a). Now, adversary Acva proceeds as

follows. It queries the message pair (1n ‖ 1n, 1n ‖ 0n) to the left-or-right oracle, and

gets an `+ 3n bit long ciphertext in return. It then takes this ciphertext, truncates

the last n bits, and submits it to the validation oracle. If the oracle returns ⊥ the

adversary outputs 0 (left), else if is returned it outputs 1 (right). It is easy to see

that Acva always succeeds and therefore its advantage is 1.

Earlier in this chapter we noted that if the IND-sfCVA experiment is defined in the

obvious way, it would be syntactically equivalent to the IND-CVA experiment. In

the case of indistinguishability from random bits, an analogous equivalence is not

evident from the syntax. Theorem 5.10 settles this in the negative, showing that for

indistinguishability from random bits the stateful notion is strictly stronger.

Theorem 5.10: IND$-CVA ∧ INV-ERR 6−→ IND$-sfCVA. Let F : Ke × {0, 1}` →
{0, 1}n be a pseudorandom function, where ` is sufficiently large. Let MA =

(Km, T ,V) be a single-error MAC where T : Km × {0, 1}∗ → {0, 1}`tag is pseu-

dorandom. Consider the symmetric encryption scheme SE3 having message space

∪k≥1{0, 1}nk and error space {⊥} shown in Figure 5.8. For any IND$-CVA adver-

sary Acva making q encryption queries totalling µ bits of plaintext, there exist three

adversaries A1
prf, A2

prf, and Auf with:

Advind$-cva
SE3 (Acva) ≤ Advprf

F (A1
prf) + Advprf

T (A2
prf) + Advuf-cma

MA (Auf)

+
µ

n
·
(
q − 1

2`

)
+
q(q − 1)

2`+n+1
. (5.9a)

Moreover there exist efficient adversaries Asfcva and A′uf such that:

Advind$-sfcva
SE3 (Asfcva) = 1−Advuf-cma

MA (A′uf) . (5.9b)

Proof. The constructed scheme is similar to that of Theorem 5.9, except that it

does not append the message with a block of 0’s, and the ciphertext is additionally

authenticated with a MAC. As before the scheme is trivially INV-ERR since its error

space contains only a single element. We will prove that the scheme is IND$-CVA

secure in two steps. For any adversary Acva we first construct adversary Auf and

110

5.3 Relations and Separations

Algorithm K

Ke ←$Ke
Km ←$Km
K ← Ke ‖ Km

σ ← ε, %← ε
return (K,σ, %)

Algorithm EK(m,σ)

if |m| 6∈ {αn : α ≥ 1}
then return ⊥

p← |m|/n
parse m as m1 ‖ . . . ‖ mp

c0 ←$ {0, 1}`
for i← 1 to p do

ci ← FKe(c0 + i)⊕mi

c← c0 ‖ c1 ‖ . . . ‖ cp
τ ← TKm(c)
return (c ‖ τ, σ)

Algorithm DK(ψ, %)

if |ψ| 6∈ {`+ `tag + αn : α ≥ 1}
then return (⊥, %)

parse ψ as c ‖ τ
v ← VKm(c, τ)
if (v 6= valid) then

return (⊥, %)
q ← (|c| − `)/n
parse c as c0 ‖ . . . ‖ cq
for i← 1 to q do

mi ← FKe(c0 + i)⊕ ci
m← m1 ‖ . . . ‖ mq

return (m, %)

Figure 5.8: The scheme SE3 of Theorem 5.10.

an IND$-CPA adversary Acpa against SE3 . In the second step we then show how to

construct adversaries A1
prf and A2

prf from any such IND$-CPA adversary. Combining

the two steps yields the desired result.

Adversary Auf runs Ke to obtain a key for F , picks a bit uniformly at random, and

then runs Acva . It then uses the random bit, the PRF indexed by the generated

key, and its own tagging oracle to simulate an Enc$(·) oracle for Acva according to

the construction of Figure 5.8. It handles validation queries by parsing the queried

ciphertext into a ‘message’ and a tag, and forwards the two to its verification oracle.

Adversary Acpa runs Acva, and simulates its encryption oracle using its own oracle.

To all validation queries it responds with ⊥ , and it outputs whatever Acva outputs.

Note that Acpa also makes q encryption queries totalling µ bits of plaintext. Now let

W represent the event that Acva wins the IND-CVA experiment, and let F represent

the event that it makes a successful validation query. It then follows that:

Pr [W] ≤ Pr
[
W ∧ F

]
+ Pr [F] .

We can assume without loss of generality that Acva never queries to its validation

oracle a ciphertext that was previously returned by the encryption oracle. We can

then bound each of the terms on the right-hand side of the inequality as follows. First

note that Auf provides Acva with a perfect simulation of the IND-CVA experiment,

and clearly whenever E occurs Auf successfully forges a tag for a new message.

111

5.3 Relations and Separations

Contrarily if F does not occur then Acpa simulates Acva’s environment perfectly,

and thus whenever W ∧ F occurs, Acpa wins the IND-CPA experiment. This yields:

Advind$-cva
SE3 (Acva) ≤ Advind$-cpa

SE3 (Acpa) + Advuf-cma
MA (Auf) . (5.10)

We now move to the second step of the proof and bound Acpa’s advantage. Towards

this aim we define a hybrid experiment ExpH, similar in spirit to the two IND$-

CPA experiments corresponding to each bit value. The hybrid experiment proceeds

exactly as the Expind$-cpa-1
SE3 experiment except for one detail. In the encryption

oracle the intermediate string which constitutes the unauthenticated ciphertext is

replaced with a uniformly random string of the same length and the MAC is then

applied to this string instead. Thus we have that:

Advind$-cpa
SE3 (Acpa) =

(
Pr
[

Expind$-cpa-1
SE3 (Acpa) = 1

]
− Pr [ExpH(Acpa) = 1]

)
+
(

Pr [ExpH(Acpa) = 1]− Pr
[

Expind$-cpa-0
SE3 (Acpa) = 1

])
. (5.11)

Now we consider each of the above terms in the braces separately, and in each case

consider Acpa’s success in distinguishing between the two experiments. For any

adversary Acpa distinguishing between the two experiments in the first term we can

associate a PRF adversary A1
prf against F . Adversary A1

prf proceeds by running

Km to obtain a key for MA, and then runs Acpa . It simulates its encryption

oracle by using MA under the obtained key and its own oracle to recreate the

encryption algorithm of Figure 5.8. Then A1
prf outputs whatever Acpa outputs. Note

that if A1
prf’s oracle is instantiated with F , it perfectly simulates a ‘real’ encryption

oracle for Acpa . On the other hand if its oracle is a random function it simulates

the encryption oracle of the hybrid experiment as long as it does not query the

random function on the same input more than once. Let E1 denote the event that

A1
prf queries its oracle on the same input more than once when simulating Acpa’s

encryption oracle, let Zb represent the event that Expind$-cpa-b
SE3 (Acpa) = 1, and let

ZH represent the event that ExpH(Acpa) = 1. The first term on the right hand

112

5.3 Relations and Separations

side of equation (5.11) can then be bounded as follows:

Pr [Z1]− Pr [ZH] ≤ Pr
[
Z1 | E1

]
− Pr

[
ZH | E1

]
+ Pr [E1]

≤ Pr
[
K ←$Ke : A1

prf
FK(·)

= 1
]

− Pr
[
f ←$ Func(`, n) : A1

prf
f(·)

= 1
]

+ Pr [E1]

≤ Advprf
F (A1

prf) +
µ

n
·
(
q − 1

2`

)
. (5.12)

The bound on Pr [E1] follows from Lemma 10 in [12]. Now for any adversary Acpa

distinguishing between the two experiments in the second term we construct a PRF

adversary A2
prf against T . Adversary A2

prf runs Acpa and simulates its encryption

oracle as follows. It first verifies that queried message is in the message space and

outputs ⊥ otherwise. It then samples a random string of length ` + |m|, where

m is the queried message, and submits it to its own oracle. It then appends the

oracle’s output to the random string and returns it to Acpa. Now when A2
prf’s oracle

is instantiated with T , it provides Acpa with a perfect simulation of the hybrid

experiment. Alternatively if its oracle is a random function it simulates the ‘random’

encryption oracle of the IND$-CPA experiment, as long as it does not query the same

string more than once. Let E2 denote this event, we then have that:

Pr [ZH]− Pr [Z0] ≤ Pr
[
ZH | E2

]
− Pr

[
Z0 | E2

]
+ Pr [E2]

≤ Pr
[
K ←$Km : A2

prf
TK(·)

= 1
]

− Pr
[
f ←$ Func(∗, n) : A2

prf
f(·)

= 1
]

+ Pr [E2]

≤ Advprf
F (A2

prf) +
q(q − 1)

2`+n+1
. (5.13)

The second term on the right-hand-side of the last inequality results from a birthday

bound on event E2. Combining equations (5.10) (5.11) (5.12) (5.13) yields inequal-

ity (5.9a). This proves that scheme SE3 is IND$-CVA secure. To conclude the proof

we now describe an adversary Asfcva that breaks the IND$-sfCVA security of this

scheme. Adversary Asfcva queries two distinct messages m1 and m2 to its encryp-

tion oracle in this exact order, and gets in return two corresponding ciphertexts

c1 and c2. It then makes an out-of-sync query c2 to the validation oracle. If the

oracle returns it outputs 1 otherwise it outputs 0. Now if the encryption oracle

113

5.4 Multiple-Error Authenticated Encryption

returned a ‘real’ encryption the validation oracle will always return . Alterna-

tively if c2 is a random string the probability that the validation oracle returns

is bounded by Advuf-cma
MA (otherwise there exists a trivial adversary against MA).

Inequality (5.9b) thus follows.

5.4 Multiple-Error Authenticated Encryption

In Section 2.4 we presented the IND-CCA3 notion, put forward by Shrimpton in [90],

as a concise and elegant security notion for authenticated encryption. For single-

error schemes this notion is equivalent to to the combination of chosen plaintext

security and ciphertext integrity. We now present a natural extension of this notion

to the multiple error setting in terms of indistinguishability from random bits. Then

in Theorem 5.11 we show that this characterisation is equivalent to the combination

of chosen-plaintext security, weak chosen ciphertext integrity, and error invariance.

Definition 5.5: IND$-CCA3 for multiple-error symmetric encryption.

Let SE = (K, E ,D) be a multiple-error symmetric encryption scheme with error space

S⊥. For an adversary A, an error message ⊥∈ S⊥ and a bit b, define experiment

Expind$-cca3-b
SE,⊥ (A) as shown in Figure 5.9. First K is called to generate a key K, an

initial encryption state σ, and an initial decryption state %. The adversary A is then

given access to a special encryption oracle Enc$(·) and a special decryption oracle

Dec∅(·). When b = 1 both oracles behave as normal encryption and decryption

oracles. When b = 0 then Enc$(·) will return a random bit string (of the same

length as an actual ciphertext would have been), and Dec∅(·) will always return ⊥
(unless the queried ciphertext was output by Enc$(·), in which case it will return).

The adversary’s goal is to output a bit b′, as its guess of the challenge bit b. The

experiment returns b′ as well and, for ⊥∈ S⊥ and an adversary A, the advantage is

defined as:

Advind$-cca3
SE,⊥ (A) = Pr

[
Expind$-cca3-1

SE,⊥ (A) = 1
]
− Pr

[
Expind$-cca3-0

SE,⊥ (A) = 1
]
.

The scheme SE is said to be IND$-CCA3 secure if there exists ⊥∈ S⊥ such that for

every adversary A with reasonable resources its advantage Advind$-cca3
SE,⊥ (A) is small.

114

5.4 Multiple-Error Authenticated Encryption

Expind$-cca3-b
SE,⊥ (A)

(K,σ, %)← K
i← 0, C← ()

b′ ← AEnc$(·),Dec∅(·)

return (b′)

Enc$(m)

(c, σ)← EK(m,σ)

if b = 0 then c←$ {0, 1}|c|
i← i+ 1, Ci ← c
return c

Dec∅(c)

(m, %)← DK(c, %)
if b = 0 then m←⊥
if c ∈ C then m←
return m

Figure 5.9: Experiment to define IND$-CCA3 security for multiple-error schemes.

Theorem 5.11: IND$-CPA ∧ INT-CTXT∗ ∧ INV-ERR ←→ IND$-CCA3.

Let SE = (K, E ,D) be a symmetric encryption scheme with error space S⊥.

• For any ⊥∈ S⊥ and any adversary Acca3 there exist adversaries Acpa, Aint and

Aerr (consuming similar resources to Acca3) such that:

Advind$-cca3
SE,⊥ (Acca3) ≤ Advind$-cpa

SE (Acpa)+Advint-ctxt∗
SE (Aint)+Advinv-err

SE,⊥ (Aerr) .

(5.14)

• For any ⊥∈ S⊥ and any three adversaries A′cpa, A′int and A′err there exist three

corresponding adversaries A1
cca3, A2

cca3 and A3
cca3 (consuming similar resources

to A′cpa, A′int and A′err, respectively) such that:

Advind$-cpa
SE (A′cpa) ≤ Advind$-cca3

SE,⊥ (A1
cca3) , (5.15a)

Advint-ctxt∗
SE (A′int) ≤ 2 ·Advind$-cca3

SE,⊥ (A2
cca3) , (5.15b)

Advinv-err
SE,⊥ (A′err) ≤ 2 ·Advind$-cca3

SE,⊥ (A3
cca3) . (5.15c)

Proof. We prove the first part of Theorem 5.11 by showing that for any ⊥∈ S⊥

115

5.4 Multiple-Error Authenticated Encryption

and any IND$-CCA3 adversary Acca3 we can construct three adversaries Acpa, Aint,

Aerr that correspond to the IND$-CPA, INT-CTXT∗, and INV-ERR experiments re-

spectively. Moreover whenever Acca3 is successful, then at least one of the three

constructed adversaries will also be successful. Each of the three adversaries runs

Acca3 and attempts to simulate its environment as follows. Acpa forwards encryp-

tion queries to its own Enc$(·) oracle and responds to decryption queries always with

⊥. It then outputs whatever Acca3 outputs. As for Aint and Aerr, these respond

to Acca3’s encryption queries using their own encryption oracle, and hence always

returns a valid encryption. Furthermore Aint forwards any decryption queries that

Acca3 makes to its Try(·) oracle, and always returns ⊥. Finally Aerr forwards all

decryption queries to its own decryption oracle.

Now let Zb represent the event that Expind-cca3-b
SE,⊥ (Acca3) = 1. For b = 1 let E and

F denote the respective events where Acca3 queries a ciphertext c to its decryption

oracle such that Dec∅(c) ∈ S⊥ \ {⊥}, and Dec∅(c) ∈M. We then have that:

Pr [Z1] = Pr
[
Z1 ∧ F ∧ E

]
+ Pr

[
Z1 ∧ F ∧ E

]
+ Pr [W ∧ E]

≤ Pr
[
Z1 ∧ F ∧ E

]
+ Pr

[
F ∧ E

]
+ Pr [E] .

Acca3’s advantage can then be expressed as:

Advind$-cca3
SE,⊥ (Acca3) = Pr [Z1]− Pr [Z0]

≤ (Pr
[
Z1 ∧ F ∧ E

]
− Pr [Z0]) + Pr

[
F ∧ E

]
+ Pr [E] .

Now each of the three terms on the right-hand side of the last inequality can be

bounded as follows. Note that Aerr provides Acca3 with a perfect simulation of the

IND$-CCA3 experiment for the case when b = 1. Thus whenever E occurs, Aerr wins

the INV-ERR experiment for ⊥. On the other hand if E does not occur then Aint

provides Acca3’s with a perfect simulation of the IND$-CCA3 experiment for the case

when b = 1. This is true until F occurs, at which point Aint wins the INT-CTXT∗

experiment. Finally if E and F do not occur, then Acpa provides Acca3 with a perfect

simulation of IND$-CCA3 experiment. It then follows that the first term corresponds

to Acpa’s advantage. Combining the above yields inequality (5.14). Note that each

of the three adversaries uses similar resources as Acca3.

116

5.4 Multiple-Error Authenticated Encryption

The second part of the theorem is easier to prove. Adversary A1
cca3 runs A′cpa,

forwards encryption queries to its own Enc$(·) oracle and outputs whatever A′cpa
outputs. Since this provides A′cpa with a perfect simulation of its environment,

it follows that they both have the same advantage. Adversary A2
cca3 runs A′int

and simulates its oracles using its Enc$(·) oracle and its Dec∅(·) oracle. If at any

point A′int queries a ciphertext (not previously returned by the encryption oracle)

which decrypts successfully, then A2
cca3 halts and outputs 1. Otherwise it outputs

a uniformly-random bit. Note that when b = 1 A2
cca3 provides A′int with a perfect

simulation of its environment, but when b = 0 A′int has zero probability of winning.

Inequality (5.15b) then follows from:

Advind$-cca3
SE,⊥ (A2

cca3) = Expind$-cca3-1
SE,⊥ (A2

cca3)−Expind$-cca3-0
SE,⊥ (A2

cca3)

=
1

2
· (1−Advint-ctxt∗

SE (A′int)) + Advint-ctxt∗
SE (A′int)−

1

2

=
1

2
·Advint-ctxt∗

SE (A′int)) .

Adversary A3
cca3 proceeds in a similar fashion. It runs A′err and simulates its ora-

cles using its Enc$(·) oracle and its Dec∅(·) oracle. If at any point A′int queries a

ciphertext which returns an error symbol in S⊥ \ {⊥}, then A3
cca3 halts and outputs

1. Otherwise it outputs a uniformly-random bit. Again when b = 1 A3
cca3 provides

A′err with a perfect simulation of its environment, but when b = 0 A′err has zero

probability of winning. Inequality (5.15c) then follows as in the previous case. Fi-

nally note that in all three cases the respective constructed IND$-CCA3 adversaries

use the same resources as A′cpa, A′int and A′err.

It can be similarly shown that:

Proposition 5.12.

IND-CPA ∧ INT-CTXT∗ ∧ INV-ERR←→ IND-CCA3 .

It is easy to see that IND$-CCA3 security guarantees IND$-CCA security in the

multiple error setting. In fact we can say something slightly stronger, as indicated

in Proposition 5.13. The proof is straightforward and we omit it.

117

5.5 The Security of Encode-then-Encrypt-then-MAC

Proposition 5.13.

IND$-CCA3 −→ IND$-CVA ∧ INT-CTXT −→ IND$-CCA

IND-CCA3 −→ IND-CVA ∧ INT-CTXT −→ IND-CCA

5.5 The Security of Encode-then-Encrypt-then-MAC

Results of Bellare and Namprempre [17] and Krawczyk [69] provide formal evi-

dence for preferring Encrypt-then-MAC (EtM) over other generic compositions like

MAC-then-encrypt (MtE). On the other hand, by combining results from [69] and

[13], it can be shown that MtE is actually IND-CCA secure when instantiated with

CBC-mode encryption or a secure stream cipher (instantiated using counter-mode

encryption, for example). Thus the analysis of [17, 69] does not help to separate

EtM and MtE when both are suitably instantiated.

Nonetheless practical secure communications systems (employing CBC and counter-

mode encryption) based on EtM have so far proved themselves less vulnerable to

attack than ones based on MtE. For example, attacks on TLS in [27, 2, 3] and the

IPsec attacks from Chapter 4 exploit weaknesses in specific MtE constructions, while

attacks against deployed EtM constructions seem rarer.

Reconsidering the EtM and MtE compositions in the multiple-error setting provides

new formal grounds for preferring the EtM composition. In what follows, we show

that the EtM composition enjoys a robust form of security (in a sense to be made

precise). We then go on to show how the above-mentioned attacks on specific MtE

constructions can be captured in our multiple-error setting.

To make our considerations more realistic, in place of EtM, we actually consider an

encode-then-encrypt-then-MAC (EEM) composition, where the encoding step ac-

counts for the pre-processing (such as padding) that is common in practical schemes.

Similarly, we will consider the MAC-then-Encode-then-Encrypt (MEE) composition

in place of MtE when discussing attacks.

118

5.5 The Security of Encode-then-Encrypt-then-MAC

Algorithm K

(Ke, σ, %)← Ke
Km ← Km
K ← Ke ‖ Km

return (K,σ, %)

Algorithm EK(m,σ)

u← EC(m)
(c, σ)← EKe(u, σ)
τ ← TKm(c)
return (c ‖ τ, σ)

Algorithm DK(ψ, %)

if |ψ| < `tag + 1 then
return (⊥0, %)

parse ψ as c ‖ τ
v ← VKm(c, τ)
if v ∈ Q⊥ then

return (v, %)
(u, %)← DKe(c, %)
if u ∈ S⊥ then

return (u, %)
m← DC(u)
return (m, %)

Figure 5.10: The generic Encode-then-Encrypt-then-MAC composition EEM with
distinguishable decryption failures.

Encoding Schemes. Formally an encoding scheme1 ES = (EC,DC) is a pair of

algorithms with an associated word space W ⊆ {0, 1}∗ and error space U⊥. The

encoding algorithm EC, which may be probabilistic, takes as input a word w ∈ W
to return a codeword u ∈ {0, 1}∗. The deterministic decoding algorithm DC takes

as input a codeword u ∈ {0, 1}∗ to return a word in W or an error message in U⊥.

We require that for all w ∈ W it hold (with probability 1) that w = DC(EC(w)).

Furthermore, an encoding scheme is said to be length-regular if for all w1, w2 ∈ W
such that |w1| = |w2| it holds (with probability 1) that |EC(w1)| = |EC(w2)| .

Our EEM composition is specified in Figure 5.10. Theorem 5.14 shows that the

EEM composition is robust, in the sense that it provides IND-CVA and INT-CTXT

security, and therefore IND-CCA security, in the multiple-error setting. The result

holds irrespective of the encoding scheme used (and any error messages it returns)

and independent of whatever error messages the encryption component returns, so

long as the encryption component is IND-CPA and the MAC is SUF-CMA.

Theorem 5.14: EEM provides IND-CVA + INT-CTXT. Suppose SE = (Ke, E ,D)

is a symmetric encryption scheme with message space M and error space S⊥.

Let MA = (Km, T ,V) be a MAC with error space Q⊥ producing tags of length

`tag. Let ES = (EC,DC) be a length-regular encoding scheme with word space

1Note that in the next chapter we will define encoding schemes differently.

119

5.5 The Security of Encode-then-Encrypt-then-MAC

M, error space U⊥, and whose range is contained in M. Figure 5.10 then de-

fines a symmetric encryption scheme EEM with message space M and error space

S⊥= S⊥∪Q⊥∪U⊥∪{⊥0}, for some ⊥0 6∈ S⊥∪Q⊥∪U⊥. For any IND-CVA adversary

Acva and any INT-CTXT adversary Aint against EEM, there exist adversaries Acpa,

A1
suf, and A2

suf such that:

Advind-cva
EEM (Acva) ≤ Advind-cpa

SE (Acpa) + Advsuf-cma
MA (A1

suf) , (5.16)

Advint-ctxt
EEM (Aint) ≤ Advsuf-cma

MA (A2
suf) . (5.17)

Moreover, these adversaries consume similar resources to Acva and Aint.

Proof. Correctness of the constructed scheme follows easily from the correctness of

its constituent schemes, and we thus proceed to prove its security. We start by

proving inequality (5.16).

Adversary Acpa simply runs Km to get a key for the MAC and then runs Acva. It

answers its left-or-right encryption queries by first encoding both messages, it then

submits them to its own oracle, computes a tag for the resulting ciphertext and

returns the ciphertext concatenated with the tag. Validation queries are handled by

extracting the tag from the submitted ciphertext, verifying the tag on the remaining

string using the derived MAC key, and returning the output toAcva. If the submitted

ciphertext is shorter than `tag it returns ⊥0 instead. It then outputs whatever Acva

outputs.

Adversary A1
suf runs Ke to get an encryption key, picks a bit uniformly at random,

and uses these together with its tagging oracle to simulate Acva’s left-or-right oracle.

It handles decryption queries by extracting the tag from the submitted ciphertext,

and submitting the tag together with the remaining string to its verification oracle,

and forwards the output to Acva. If the submitted ciphertext is shorter than `tag it

returns ⊥0 instead.

Now let W represent the event Expind-cva-b
EEM (Acva) = b where b is picked uniformly

at random. Let E represent the event that Acva makes a validation query which

120

5.5 The Security of Encode-then-Encrypt-then-MAC

returns an error message in S⊥ \ Q⊥. We then have that:

Pr [W] = Pr
[
W ∧ E

]
+ Pr [W ∧ E]

≤ Pr
[
W ∧ E

]
+ Pr [E] .

We bound each term on the right-hand side of the last inequality as follows. Note

that A1
suf simulates Acva’s environment perfectly until one of Acva’s queries results

in a forgery for A1
suf. It then follows that whenever E occurs, A1

suf wins the SUF-

CMA experiment. On the other hand if E does not occur, then Acpa’s simulation

of Acva’s environment is perfect. Consequently whenever event W ∧E occurs, Acpa

wins the IND-CPA experiment. Equation (5.16) then follows by combining the above

and using equation (5.3).

Adversary A2
suf runs Ke to get an encryption key, picks a bit uniformly at random,

and uses these together with its tagging oracle to simulate Aint’s encryption oracle.

For each encryption query that Aint’s submits, it first encodes the message and then

encrypts it with EK . It then obtains a tag for the resulting ciphertext from its

own oracle, and returns the ciphertext concatenated with the tag. Queries to the

Try(·) oracle are handled by extracting a tag from the ciphertext, and submitting

tag together with the remaining string to its verification oracle, and the output is

returned to Aint. On the other hand if the submitted ciphertext cannot be parsed ⊥0

is returned. Note that A2
suf provides Aint with a perfect simulation of the INT-CTXT

experiment until the point at which Aint makes a successful try query. Moreover

whenever Aint forges a ciphertext, A2
suf’s corresponding verification query will also

constitute a forgery. Inequality (5.17) thus follows.

As a complement to the above result, it is instructive to model attacks on instanti-

ations of the MAC-then-Encode-then-Encrypt (MEE) composition in our multiple-

error setting.

• TLS uses a MEE composition in which the encoding step involves the addition

of padding having a specific format. This format should be checked for upon

decryption, with a failure resulting in an error message. Likewise, the MAC

verification may fail, resulting in an error message. Error messages in TLS

121

5.5 The Security of Encode-then-Encrypt-then-MAC

are encrypted in general, and MAC failures and padding failures are indicated

by the same error message. The attacks on TLS [27] and on DTLS [2] use

timing differences to distinguish MAC failures from padding failures. These

differences can be modelled by introducing distinct error messages for the two

failure events (even if at the byte level, the messages are indistinguishable).

• Certain configurations of IPsec use a MEE composition to cryptographically

protect IP packets. The security of these configurations were studied in detail

in Chapter 4. Here, the encoding step includes a padding portion as well as

a header portion, and it is the ability to discern between malformed padding

and a malformed header that gives rise to the attacks in Chapter 4. In fact,

malformed padding leads to packets being silently dropped, while malformed

headers lead to encrypted error messages being sent on the network. Again,

the attacks can be modelled by introducing distinct error messages for the

different events, even though one of the events does not result in an actual

error message being sent (since the absence of a message also leaks information

to the adversary).

• The recent Lucky 13 attack on TLS [3] exploits timing differences arising in

HMAC’s verification algorithm. More specifically each compression function

evaluation in HMAC results in additional processing time during decryption

that can be detected by the adversary from the time delay in returning TLS’s

MAC failure message; the size of the delay relates to the amount of TLS

padding previously removed and can be used to infer plaintext in an extension

of Vaudenay’s padding oracle attack [93]. This timing channel can be modelled

in our framework by transforming HMAC into a multiple-error MAC. Then

the error messages that this version of HMAC returns can be easily predicted

from the length of the string on which the tag is to be verified. It follows from

this observation that any proof of SUF-CMA security for the usual single-error

HMAC can be extended to this multiple-error version of HMAC. So, while this

multiple-error HMAC is still SUF-CMA secure, its interaction with the TLS

padding renders the MEE composition used in TLS insecure. By contrast, as

established in Theorem 5.14, an EEM composition would not be compromised

by such an implementation flaw.

Finally, we point out that it is also possible to prove that EEM provides IND-CCA3

122

5.6 Summary

security if its MAC component only has a single error message. We omit the details.

5.6 Summary

Our work can be seen to fall in line with other approaches in cryptography, such

as nonce-based symmetric encryption [85], where one aims to design cryptographic

schemes whose security is more resilient to flaws introduced during implementation.

Nonce-based encryption schemes only require a nonce as their auxiliary input (except

for the secret key), which need be neither random, nor secret, nor unpredictable; in

fact it can even be adversarially generated (as long as no value is ever repeated).

Thus nonce-based schemes alleviate the security requirements for generating and

handling the auxiliary input in the scheme’s implementation and are therefore less

prone to implementation vulnerabilities. Similarly our work can be seen as relaxing

the assumption that decryption failures are indistinguishable to the adversary, an

assumption that is implicit in almost every treatment of symmetric encryption found

in the literature. By adopting a syntax where distinct decryption failure return

distinct error messages, and proving security in this framework, one obtains schemes

whose security is more resilient to implementation flaws.

123

Chapter 6

Ciphertext Fragmentation

Contents

6.1 Introduction . 125

6.1.1 Related Work . 126

6.2 Symmetric Encryption Supporting Fragmentation 127

6.2.1 Unified Syntax . 127

6.2.2 Degrees of Statefulness . 132

6.3 Confidentiality . 134

6.3.1 The Stateful Notion . 134

6.3.2 A Notion for SBB Schemes 138

6.4 Boundary Hiding . 139

6.4.1 Security Definitions . 140

6.4.2 Unsatisfiability of SBB Boundary Hiding 146

6.5 Denial of Service . 147

6.5.1 Security Definitions . 148

6.6 Constructions . 152

6.6.1 Applying Instantaneously Decodable Postprocessing (IDP) 152

6.6.2 The InterMAC Construction 160

6.6.3 A SBB Variant of InterMAC 167

6.7 Summary . 172

In this chapter we study symmetric encryption in the presence of ciphertext frag-

mentation. We formalise this setting and define notions for confidentiality, bound-

ary hiding, and denial of service in the presence of ciphertext fragmentation. The

chapter concludes with constructions of encryption schemes that meet these notions.

124

6.1 Introduction

6.1 Introduction

The work in this chapter is motivated by the SSH attack of Albrecht, Paterson and

Watson, described in Section 3.5, and the IPsec attacks by Degabriele and Paterson,

described in Chapter 4. What is common to these attacks is that they exploit

the data fragmentation mechanisms in each of the corresponding protocols. Data

sent over networks is often fragmented, meaning that it is broken up into smaller

pieces, or packets. If the data is encrypted, the receiver first has to determine what

constitutes a complete ciphertext in order to decrypt it and obtain the underlying

message. An exception to this, is when on-the-fly decryption is required, but this

is known to reduce security [58]. Reconstruction of the original ciphertext by the

receiver can be accomplished by various methods. As we saw in earlier chapters,

SSH uses an encrypted length field that tells the receiver how many bytes are needed

before the complete ciphertext has arrived. IPsec on the other hand, employs the

system of Identification field, More Fragments flag, and Fragment Offset field that

it inherits from IP. The SSH and IPsec attacks highlight the conflicts that can arise

between confidentiality and support for data fragmentation.

With the exception of [79], ciphertext fragmentation has been ignored by the theoret-

ical community. Security models tend to abstract out data fragmentation, possibly

on the assumption that it is immaterial to the security of encryption schemes. Fur-

thermore, ciphertext fragmentation is not only detrimental to confidentiality, but

also to more practical security goals, such as traffic analysis. In fact the SSH de-

signers’ decision to encrypt the length field (as opposed to the case of TLS where

the length field is in the clear) appears to be intended to mitigate traffic analysis,

since a cleartext length field allows the delineation of ciphertext boundaries, thereby

immediately revealing the ciphertext lengths. Moreover the mechanisms required to

support ciphertext fragmentation may introduce new types of security vulnerabili-

ties. Consider SSH for instance, there an adversary is able to exploit the bit-flipping

property of the CBC and CTR modes (see Section 2.3.3) to alter the length field

that occupies the first 32 bits of plaintext. If the length is maliciously increased

to a very large value (say, 232 − 1, the maximum possible value for a 32-bit field),

then the receiver will continue listening for ciphertext fragments awaiting message

completion until 232 bytes of data have been received. Only then will SSH’s MAC

125

6.1 Introduction

verification be conducted and the message rejected. The application (or user) re-

ceiving data from the SSH connection experiences this as an SSH connection hang,

a form of Denial-of-Service. As explained in Section 3.2, OpenSSH limits the value

of the length field to 218 so as to mitigate against such DoS attacks. However this

comes at the expense of limiting the maximum message length.

In this work we seek to strike the right balance between two conflicting aims: keep-

ing the generality and simplicity of traditional security definitions for symmetric

encryption; and developing a framework that can be used to provide meaningful

provable security analyses of practical schemes when deployed in environments that

permit ciphertext fragmentation attacks.

To this end, we initiate a general study of the security of symmetric encryption

schemes against fragmentation attacks, not only in terms of message confidentiality,

but also in terms of length-hiding and prevention of fragmentation-enabled Denial-of-

Service (DoS) attacks against the receiver. To the best of our knowledge, the latter

two goals for encryption, i.e. length-hiding (or, more precisely, hiding ciphertext

boundaries in a ciphertext stream) and DoS prevention have not been previously

studied, partly because the corresponding threats are not present if encryption is

treated as being atomic. The adversarial capabilities we define are general enough

to model a wide class of fragmentation attacks, including but not limited to the ones

from [1, 30].

We complement our new security definitions with efficient cryptographic construc-

tions based on standard primitives meeting the new goals. While it may be relatively

easy to achieve each security goal independently, it transpires that it is not straight-

forward to achieve two or three of the aforementioned goals simultaneously and one

of our schemes is the first to do so.

6.1.1 Related Work

Our fragmented approach bears more than a passing resemblance to work on on-

line encryption [11, 5, 6, 24, 41, 42, 43, 58]. However, whereas the on-line setting

concerns a single continuous message and ciphertext, with each block of plaintext

126

6.2 Symmetric Encryption Supporting Fragmentation

leading to a block of ciphertext being output during encryption (and vice-versa dur-

ing decryption), our setting concerns atomic encryption (reflecting how many secure

protocols operate) but allows fragmented decryption of ciphertexts. Moreover, we

extensively treat the case of active adversaries, a topic that has not achieved much

attention in the on-line literature, and we consider more than just confidentiality

security notions.

Paterson and Watson [79] presented a formal analysis of SSH in counter mode, as im-

plemented in OpenSSH, in a security model that captures ciphertext fragmentation.

This obviously bears some similarity to our work, but there are some important

differences in scope as well as in the approach that we adopt. While the aim of

[79] is to prove secure the OpenSSH implementation of SSH-CTR in a more realistic

security model, our scope is to study encryption schemes supporting ciphertext frag-

mentation and their security more generally. In the context of our scope, the work

of Paterson and Watson suffers from the following limitations. Firstly they do not

consider boundary-hiding and denial-of-service security. Secondly, a correctness re-

quirement is completely missing. As we shall see this is non-trivial to define. Thirdly,

their confidentiality definition [79, Definition 2], which is also based on Bellare et

al.’s IND-sfCCA notion, is tailored specifically to work with SSH. In particular, the

security experiments refer directly to quantities that are SSH specific. For instance

the length field, sequence number and buffer as used by SSH are also crucial for the

definition of security in [79]. Furthermore, a stateful-failing behaviour, where if one

decryption call fails all subsequent decryption calls will also fail, is incorporated in

the security experiment in [79]. We believe it should be up to the scheme whether

to behave in such a way, enforcing it as part of the security experiment results in a

weaker security notion. Overall we find our definition to be simpler, cleaner, and at

the same time more general.

6.2 Symmetric Encryption Supporting Fragmentation

6.2.1 Unified Syntax

Morphology. We now extend the definition of symmetric encryption from Sec-

tion 2.3.1 for the case of fragmented ciphertexts. As before we will have that

127

6.2 Symmetric Encryption Supporting Fragmentation

M ∈ {0, 1}∗ and C ∈ {0, 1}∗; in addition we will allow schemes to have multiple

errors as in Chapter 5. Complications arise when considering encryption schemes

in the presence of ciphertext fragmentation. For instance, a single ciphertext can

be split up in multiple fragments (Fig. 6.1, requiring recombination of the decryp-

tions of the various fragments) or a single fragment can contain multiple ciphertexts

(Fig. 6.2, where one might like to decrypt to a list of messages).

Definition 6.1: Symmetric encryption scheme supporting fragmentation.

A symmetric encryption scheme supporting fragmentation SE = (K, E ,D) with asso-

ciated message space M ∈ {0, 1}∗, ciphertext space C = {0, 1}∗ and error messages

S⊥ is defined by three algorithms:

• The randomised key generation algorithm K returns a secret key K and initial

states σ0 and %0.

• The randomised and stateful encryption algorithm

E : K ×M× Σ→ C × Σ

takes as input the secret key K ∈ K, a plaintext m ∈ M, and the current

encryption state σ ∈ Σ, and returns a ciphertext in C together with an updated

state. For any ` ∈ N and any m = [m1, . . . ,m`] ∈ M`, we write (c, σ) ←
EK(m, σ0) as shorthand for (c1, σ1) ← EK(m1, σ0), (c2, σ2) ← EK(m2, σ1), . . .

(c`, σ`)← EK(m`, σ`−1) where c = [c1, . . . , c`] and σ = σ`.

• The deterministic and stateful decryption algorithm

D : K × {0, 1}∗ × Σ→ ({0, 1} ∪ {¶} ∪ S⊥)∗ × Σ

takes the secret key K, a ciphertext fragment f ∈ {0, 1}∗, and the cur-

rent decryption state % to return the corresponding plaintext fragment m ∈
({0, 1} ∪ {¶} ∪ S⊥)∗ together with the updated state %. For any ` ∈ N and

any f = [f1, . . . , f`] ∈ ({0, 1}∗)`, we write (m, %)← DK(f , %0) as shorthand for

(m1, %1) ← DK(f1, %0), (m2, %2) ← DK(f2, %1), . . . (m`, %`) ← DK(f`, %`−1),

where m = m1 ‖ . . . ‖ m` and % = %`.

128

6.2 Symmetric Encryption Supporting Fragmentation

1 2 3 4 5

Figure 6.1: A single ciphertext c1 = (12) cut up in multiple fragments f1 = (1) and
f2 = (2).

1 2 3 4 5

Figure 6.2: A single fragment f1 = (12345) spanning multiple ciphertexts c1 = (12)
and c2 = (345).

Note that the decryption algorithm is assumed to be able to handle ciphertexts

which decrypt to multiple plaintext messages, or to a mixture of plaintexts and er-

ror symbols, or possibly to nothing at all (perhaps because the input ciphertext is

insufficient to enable decryption to yet output anything, giving a significant differ-

ence from the atomic setting where decryption always outputs something). We use

the symbol ¶ 6∈ {0, 1} ∪ S⊥ to denote the end of plaintext messages, enabling an

application making use of the decryption algorithm to parse the output uniquely

into a sequence of elements of M and errors from S⊥.

While we enforce that from a decryption of a sequence of ciphertext fragments,

the corresponding message boundaries are easy to distinguish, we make no such

requirement for ciphertexts. Indeed, given a sequence of ciphertext fragments, it will

not be a priori clear what the constituent ciphertexts are (and in fact, in Section 6.4,

we want to model schemes which hide these boundaries as a security goal). Looking

ahead, the absence of clear ciphertext boundaries (in a sequence of fragments) will

cause challenging parsing problems for our CCA definitions: in order to ‘forbid’

decryption of the challenge ciphertext, a prerequisite is that this challenge ciphertext

can be located accurately in the sequence of ciphertext fragments!

1 2 3 4 5

Figure 6.3: Fragments f1 = (12) and f2 = (345) coincide exactly with the two
ciphertexts c1 = (12) and c2 = (345).

129

6.2 Symmetric Encryption Supporting Fragmentation

Correctness. If a single message is encrypted and the corresponding ciphertext

is subsequently decrypted, we expect that the message is returned. When multi-

ple messages are encrypted and the fragments correspond exactly to the ciphertext

(Fig. 6.3), again we expect to retrieve the original messages.

However, we expect something stronger, namely that regardless of how we fragment

the ciphertext(s), the original message(s) are returned. For instance in the situation

depicted in Fig. 6.1 two ciphertexts c1 = (12) and c2 = (345) are produced by the

encryption oracle, and the adversary subsequently submits fragments f1 = (1) and

f2 = (2) to its decryption oracle. We require that after reception of the second

fragment (or earlier), the ciphertext c1 gets decrypted (formalised by the correct

message being output). Similarly, in Fig. 6.2, after reception of the single fragment

spanning two ciphertexts, we expect both messages to be returned (with correct

message boundaries indicated).

Finally, we require correct decryption, even when an extra string is added to the

original (string of) ciphertexts. This forces correct decryption once a complete

valid ciphertext has been received, even if it is followed by an invalid ciphertext

fragment. For instance, in the situation depicted in Fig. 6.5 two ciphertexts c1 = (12)

and c2 = (345) are produced by the encryption oracle, the adversary subsequently

submits fragments f1 = (1) and f2 = (234′5′) to its decryption oracle, and we still

want to see the first ciphertext decrypted properly.

With this intuition in mind, we are almost ready to give our definition of correctness

for a symmetric encryption scheme supporting fragmentation. We first define a map

¶ : ({0, 1}∗∪ S⊥)∗ → ({0, 1}∪{¶}∪ S⊥)∗ by ¶(m1, . . . ,m`) = m1 ‖ ¶ ‖ . . .¶ ‖ m` ‖
¶. Note that ¶ is injective but not surjective.

Definition 6.2: Correctness Requirement. For all (K,σ0, %0) that can be

output by K and for all m ∈ M∗ and f ∈ ({0, 1}∗)∗, it holds (with probability 1)

that if (c, σ) ← EK(m, σ0) and ||(c) prefixes ||(f), and if (m′, %) ← DK(f , %0) then

m′ is prefixed by ¶(m).

130

6.2 Symmetric Encryption Supporting Fragmentation

1 2 3 4 5

Figure 6.4: Correct decryption for overly long fragments: Given valid ciphertexts
c1 = (12) and c2 = (345) and fragment f1 = (123), what should the decryption of
f1 be?

1 2 3 4′ 5′

Figure 6.5: Two consecutive fragments f1 = (1) and f2 = (234′5′). The second
fragment completes the first ciphertext c1 = (12), so we expect that to be decrypted
at this point, even though ciphertext c2 = (345) in the second fragment has been
modified to produce a possibly invalid ciphertext.

Alternatives. Our choice for correctness (Definition 6.2) might seem natural, but

it is not the only way to define it. Certainly, if a single, honestly generated ciphertext

is cut up into multiple fragments, then decrypting all those fragments ought to result

in the original message. This extends to a situation where (the concatenation of)

multiple ciphertexts is split up into fragments in such a way that every ciphertext

boundary coincides with a fragment boundary (this implies that every fragment is

a substring of a single ciphertext). However, when allowing a single fragment to

extend over multiple ciphertexts (see Fig. 6.4 for an example), it is not immediately

clear what ‘correct’ entails. Let us briefly consider three possible interpretations.

Fault: The ciphertext is deemed invalid, and ⊥ is returned.

Flush: The message is returned, and any surplus ciphertext is ignored.

Buffer: The message is returned, and any surplus ciphertext is considered as start-

ing a new ciphertext (buffering).

We have opted for a strict version of the final interpretation in our correctness

definition, which intuitively requires some sort of buffering to take place in the de-

cryption algorithm. Thus our choice of definition for correctness inherently requires

any scheme that supports fragmentation to have a stateful decryption algorithm.

SSH is a prime example of a stateful scheme that buffers (although it keeps more

131

6.2 Symmetric Encryption Supporting Fragmentation

state than just the buffer). Next we classify two different degrees of statefulness

that a scheme may have.

6.2.2 Degrees of Statefulness

In Chapter 2 we considered stateful schemes as a special type of symmetric en-

cryption schemes, and saw that such schemes are able to meet stronger notions of

security. However when considering ciphertext fragmentation we see that schemes

need to be stateful. Thus we will mainly consider stateful schemes, and as a special

case we will consider schemes that employ only a ‘minimal’ form of state necessary

to support fragmentation. For each notion of security we will first present a ‘strong’

variant following similar ideas to the security notions in Section 2.5. These notions

will generally be met only by schemes which maintain a non-minimal state. Then

we will present weakened variants of these notions which can be met by schemes

within the special subclass having minimal state.

Stateful schemes. This includes all schemes supporting ciphertext fragmenta-

tion, and no restriction is imposed on the nature of the state that is maintained

by the decryption algorithm. The encryption algorithm may or may not be state-

ful. This covers most practical encryption schemes, which, in the non-fragmented

scenario, would normally be considered stateful. For instance, this can be used to

model the situation where encryption and decryption are both based on a counter

that increases depending on the number of messages or ciphertexts processed.

Stateless beyond buffering (sbb) schemes. This is a subclass of the above

category, which is intuitively an extension of standard (atomic), stateless encryption

schemes that makes handling fragmented ciphertexts possible. Namely, we specify

three properties which intuitively capture the behaviour of a buffer, and require that

the decryption state satisfy these properties. Our formulation allows us to identify

states that essentially act as buffers, without imposing any restrictions on the state’s

internals or format. Again the encryption algorithm may or may not be stateful.

This is in line with [16] where the statefulness of a scheme is determined solely by

the statefulness of the decryption algorithm. More formally, we have:

132

6.2 Symmetric Encryption Supporting Fragmentation

Definition 6.3: Stateless beyond buffering (sbb). A symmetric encryption

scheme supporting fragmentation is called stateless beyond buffering (or sbb for

short) if it is correct (Definition 6.2) and satisfies the following additional conditions

1. The initial decryption state is empty, that is for all (K,σ0, %0) that can be out-

put by K, %0 = ε; for simplicity’s sake, we will often simply write

(K,σ)← K for sbb schemes.

2. The decryption state is empty after decryption of each ciphertext obtained

from encryption, i.e. for all K that can be output by K, for all σ ∈ Σ, for

all m ∈ M, it holds (with probability 1) that if (c, σ) ← EK(m,σ) and if

(m′, %)← DK(c, ε), then % = ε.

3. The scheme satisfies literal decryption: for allK ∈ K and for all f = (f1, . . . , f`),

when f ′ = f1 ‖ . . . ‖ f`, then DK(f , ε) = DK(f ′, ε).

The first condition is straightforward and its purpose is to ensure that the decryption

algorithm is not initialised with any state information. The second condition says

that for legitimately generated ciphertexts, the decryption state is flushed when the

end of a ciphertext is detected. Put differently, this condition ensures that no state

information is maintained across ciphertexts, i.e. the decryption of one ciphertext

does not depend on previous ciphertexts. However this ‘stateless’ behaviour is only

guaranteed as long as the ciphertexts are generated by the encryption algorithm.

In particular for an adversarially-generated sequence of ciphertext fragments, de-

pending on the scheme at hand, a number of outcomes are possible. After a few

ciphertext fragments the decryption algorithm may detect the end of a ciphertext

and return ¶, possibly following ⊥∈ S⊥ if the ciphertext was deemed invalid, or

after some plaintext if the ciphertext was understood to be valid. Alternatively the

decryption may never recover, in the sense that it will never return ¶ but possibly

it may return a sequence of outputs in ({0, 1} ∪ S⊥)∗. From the second property it

follows that state can only be maintained across fragments belonging to the same

ciphertext. The literal decryption property then says that the decryption state will

not (or does not need to) keep track of how the ciphertext was fragmented, since it

will not affect the output of the decryption algorithm.

133

6.3 Confidentiality

6.3 Confidentiality

6.3.1 The Stateful Notion

When considering the security of a scheme supporting fragmentation, the first thing

to note is that fragmentation matters only in the CCA setting: if there is no de-

cryption oracle, then whether decryption is fragmented or atomic is immaterial to

the security of the scheme. In the context of fragmentation, we will replace the

usual notion of chosen-ciphertext attacks by chosen-fragment attacks (CFA). Our

first notion, IND-sfCFA is tailored for stateful schemes and it is inspired by Bellare

et al.’s [16] notion of IND-sfCCA (for atomic schemes) presented in Section 2.5. Re-

call that for IND-sfCCA, an adversary has unlimited access to the decryption oracle;

there are no ‘prohibited’ queries. Instead, to avoid trivial attacks (by the adversary

simply relaying its challenge ciphertext for decryption) a syncing mechanism is used.

Initially the decryption oracle is in-sync and its output (to the adversary) will be

suppressed. Only when the adversary causes the decryption oracle to be out-of-sync

(by deviating from the ciphertext stream output by the encryption oracle) will the

purported plaintexts (or error messages) be returned.

For atomic schemes, this is relatively straightforward to define, but for schemes sup-

porting fragmentation, some ambiguity arises. Consider again the scenario sketched

in Fig. 6.5. The first fragment is in-sync and any plaintext output corresponding to it

will be suppressed. In the second fragment a deviation from the challenge ciphertext

stream occurs. However, part of the fragment is still in-sync and certainly outputting

the full decryption would—mindful of the correctness requirement—reveal (part of)

the plaintext (12). We will need to formalise this by officially declaring part of the

fragment in-sync, and part of it out-of-sync. The ambiguity arises with regards to

the boundary we should use: is sync lost already at ‘3’ (being the first symbol of a

ciphertext that is not completed properly) or only at ‘4’ (being the first symbol of

the fragment that actually deviates)?

In our definition of IND-sfCFA (Definition 6.4) we opted for the strongest inter-

pretation, namely where synchronisation is lost at the ciphertext boundary. Since

this results in synchronization potentially being lost earlier, the decryption oracle

134

6.3 Confidentiality

consequently suppresses less of its output, making it the stronger option.

Definition 6.4: IND-sfCFA. Let SE = (K, E ,D) be an encryption scheme

supporting fragmentation. For an adversary A and a bit b, define experiment

Expind-sfcfa-b
SE (A) as depicted in Fig. 6.6. The experiment starts by calling K to

generate a key K and initialise the states. The adversary A is given access to a

left-or-right encryption oracle LoR(·) and a stateful decryption oracle sfDec(·). The

stateful decryption oracle can be queried on any sequence of ciphertext fragments,

but as long as the decryption queries are in sync the output will be artificially

suppressed.

The adversary’s goal is to output a bit b′ as its guess of the challenge bit b, and the

experiment returns b′ as well. The corresponding advantage of an adversary A is

given by:

Advind-sfcfa
SE (A) = Pr

[
Expind-sfcfa-1

SE (A) = 1
]
− Pr

[
Expind-sfcfa-0

SE (A) = 1
]
.

The scheme SE is said to be IND-sfCFA secure, if for every adversary A with rea-

sonable resources its advantage Advind-sfcfa
SE (A) is small.

A few words of explanation about the workings of sfDec(·) are in order. Recall that

C � F denotes the greatest common prefix of C and F . Thus the test condition

C �F = C checks whether C is a prefix of F . The while loop starts by gathering the

sequence of complete ciphertexts that have been relayed from the left-or-right oracle

to the decryption oracle, concatenates them into one string, appends the subsequent

ciphertext output by LoR(·) (if this exists), and stores the output in C. Then if F

(the concatenation of all ciphertext fragments submitted for decryption) is a prefix

of C, the queries are deemed to be in sync and the output is suppressed. Otherwise

the sync flag is set to 0 and the output string corresponding to the first out-of-sync

ciphertext and onwards is returned.

135

6.3 Confidentiality

Expind-sfcfa-b
SE (A)

(K,σ, %)← K
i← 0, j ← 0, sync← 1
C ← ε, F ← ε,M ← ε
C← (), M← ()

b′ ← ALoR(·),sfDec(·)

return b′

LoR((m0,m1))

if |m0| 6= |m1| then return
(c, σ)← EK(mb, σ)
i← i+ 1, Ci ← c, Mi ← mb

return c

sfDec(f)

(m, %)← DK(f, %)
F ← F ‖ f , M ←M ‖ m
if sync = 1 then

while C � F = C and j < i
j ← j + 1
C ← C ‖ Cj

if F � C = F then m← ε
else

sync← 0
m′ ← ¶(M1, . . . , Mj−1)
m←M %m′

return m

Figure 6.6: Experiment to define IND-sfCFA security.

136

6.3 Confidentiality

Expind-sbbcfa-b
SE (A)

(K,σ, %)← K
i← 0, F ← ε, C← ()

b′ ← ALoR(·),Dec(·)

return b′

LoR((m0,m1))

if |m0| 6= |m1| then return
(c, σ)← EK(mb, σ)
i← i+ 1, Ci ← c
return c

Dec(f)

M ← ε, prefix← 0
len← |f |
for k = 1 to len

(m, %)← DK(f [k], %)
m′ ← m′ ‖ m
F ← F ‖ f [k]
if % = ε and m′[|m′|] = ¶ then

if F ∈ C then m′ ← ε
M ←M ‖ m′
F ← ε,m′ ← ε

for all c ∈ C

if F � c = F then prefix← 1
if prefix = 0 then

M ←M ‖ m′,m′ ← ε
return M

Figure 6.7: Experiment to define IND-sbbCFA security.

137

6.3 Confidentiality

6.3.2 A Notion for SBB Schemes

Similarly to the stateful notions from [16], Definition 6.4 protects against attacks

which replay and reorder ciphertexts. In order for a scheme to protect against

such attacks it needs to maintain a decryption state across ciphertexts. Hence IND-

sfCFA is ‘too strong’ for SBB schemes, as the second requirement of Definition 6.3

explicitly rules out the ability to maintain states across ciphertexts. Accordingly for

SBB schemes we propose an analogous but weaker notion of confidentiality which

does not capture replay and reordering of ciphertexts. In this setting detecting

prohibited queries, which would lead to trivial win conditions, becomes challenging.

In fact we resort to specific properties of SBB schemes in this definition, specifically

literal decryption and the property that no state is maintained across ciphertexts.

Inside the decryption oracle we exploit the literal decryption property to decrypt

ciphertext fragments incrementally, i.e. bit by bit. Then we can detect ciphertext

boundaries by looking for a condition where the last output symbol is ¶ and the

decryption state is empty. Since Definition 6.5 makes use of properties specific to

SBB schemes, it only guarantees a meaningful notion of security for this subclass of

schemes, and not schemes supporting fragmentation in general.

Definition 6.5: IND-sbbCFA. Let SE = (K, E ,D) be an encryption scheme

supporting fragmentation that is stateless-beyond-buffering. For an adversary A and

a bit b, define experiment Expind-sbbcfa-b
SE (A) as depicted in Fig. 6.7. The experiment

start by calling K to generate a key K and initialise the states. The adversary A
is then given access to a left-or-right encryption oracle LoR(·) and a decryption

oracle Dec(·). The decryption oracle can be queried on any sequence of ciphertext

fragments, except that the output corresponding to a ciphertext previously output

by the left-or-right oracle will be artificially suppressed.

The adversary’s goal is to output a bit b′ as its guess of the challenge bit b, and the

experiment returns b′ as well. The corresponding advantage of an adversary A is

given by:

Advind-sbbcfa
SE (A) = Pr

[
Expind-sbbcfa-1

SE (A) = 1
]
− Pr

[
Expind-sbbcfa-0

SE (A) = 1
]
.

The scheme SE is said to be IND-sbbCFA secure, if for every adversary A with

138

6.4 Boundary Hiding

reasonable resources its advantage Advind-sbbcfa
SE (A) is small.

Note that M now represents the string that is returned by the decryption oracle in

response to the queried fragment f ; accordingly this is always reset at the beginning.

The variable F accumulates bits corresponding to a single ciphertext, and is kept

to monitor whether this ciphertext was previously output by the encryption oracle.

The contents of F are maintained across calls to the decryption oracle, and are

only reset when a ciphertext boundary is encountered. Similarly, m′ accumulates

the plaintext bits corresponding to a single message. If after processing f , F does

not yet contain a complete ciphertext, but it contains a prefix of a ciphertext that

was previously output by the encryption oracle, the corresponding plaintext is not

output but is stored in m′ instead.

6.4 Boundary Hiding

It is conventional wisdom that an encryption scheme cannot hide entirely the mes-

sage length from an adversary. In practice however, the message length can convey

information about the nature of the message. For instance the IPsec attacks from

Chapter 4 identify ICMP error messages from their length. As another example,

traffic analysis has been used to derive approximate transcripts of encrypted Voice

over IP (VoIP) conversations [96]. Traffic analysis is a real concern, and in prac-

tice heuristic countermeasures are commonly employed to mitigate such attacks.

Practical protocols like TLS, SSH, and IPsec use variable-length padding, while

IPsec additionally provides the ability to insert dummy messages/packets. A recent

study by Dyer et al. [38] shows that none of the aforementioned countermeasures,

together with others that have been proposed in the literature, are effective in pre-

venting HTTP fingerprinting. However their attacks do not rely solely on ciphertext

lengths.

The ability to fragment ciphertexts without affecting correct decryption may be ex-

ploited as an alternative (heuristic) means to frustrate traffic analysis. Ciphertext

lengths may no longer be evident from a stream of randomly-fragmented ciphertexts

flowing across a channel. However this requires the encryption scheme to not reveal

139

6.4 Boundary Hiding

ciphertext boundaries. We therefore formalise the goal of hiding ciphertext bound-

aries within a concatenation of ciphertexts as an intermediate security goal towards

this heuristic strategy and preventing traffic analysis in general.

We give definitions for both the passive and the active adversary cases. The passive

case is the one that is commonly assumed in the traffic analysis literature [38, 96].

Here the adversary merely monitors encrypted traffic and tries to infer information

from ciphertext lengths and other information such as network packet timings, but

without giving away its presence by actively modifying network traffic. By hiding the

ciphertext boundaries, the adversary can no longer determine individual ciphertext

lengths, except of course, for the total volume being sent. As we will see, achieving

security in the passive case is relatively straightforward. Much more challenging is

achieving security in the active case. For example, it was already pointed out by

Albrecht et al. [1] that SSH, while attempting to hide ciphertext boundaries, fails to

do so against active, fragmented attacks (there is a simple bit-flipping attack which

works irrespective of whether CBC or CTR mode encryption is used in the SSH

construction).

6.4.1 Security Definitions

Definition 6.6: BH-CPA and BH-sfCFA. Let SE = (K, E ,D) be an encryp-

tion scheme supporting fragmentation. For an adversary A and a bit b, define

experiments Expbh-cpa-b
SE (A) and Expbh-sfcfa-b

SE (A) as shown in Figure 6.8. Both ex-

periments start by calling K to generate a key K and initialise the states. The

adversary A is given access to a special left-or-right encryption oracle LoR(·): on

input two vectors of messages, either the left or the right result is returned, but

with the caveat that the concatenation of ciphertexts is returned only if it has the

same length in both worlds (but note that we do not insist that the two vectors of

messages contain the same number of components). In the latter experiment the

adversary is additionally given a stateful decryption oracle sfDec(·) identical to that

used in the IND-sfCFA experiment. The adversary can query this oracle on any

sequence of ciphertext fragments, but as long as the decryption queries are in sync

the output is artificially suppressed.

140

6.4 Boundary Hiding

Expbh-cpa-b
SE (A) Expbh-sfcfa-b

SE (A)

(K,σ, %)← K
i← 0, j ← 0, sync← 1
C ← ε, F ← ε,M ← ε
C← (), M← ()

b′ ← ALoR(·) b′ ← ALoR(·),sfDec(·)

return b′

LoR((m0,m1))

σ0 ← σ, σ1 ← σ
(c0, σ0)← EK(m0, σ0)
(c1, σ1)← EK(m1, σ1)
c0 ← ||(c0), c1 ← ||(c1)
if |c0| 6= |c1| then return
σ ← σb
for k = 1 to |cb|

i← i+ 1
Ci ← cb(k), Mi ←mb(k)

return cb

sfDec(f)

(m, %)← DK(f, %)
F ← F ‖ f , M ←M ‖ m
if sync = 1 then

while C � F = C and j < i
j ← j + 1
C ← C ‖ Cj

if F � C = F then m← ε
else

sync← 0
m′ ← ¶(M1, . . . , Mj−1)
m←M %m′

return m

Figure 6.8: Experiments to define BH-CPA and BH-sfCFA security. For BH-CPA
the boxed code is excluded, whereas for BH-sfCFA the boxed code replaces the code
adjacent to it.

141

6.4 Boundary Hiding

In both experiments, the adversary’s goal is to output a bit b′ as its guess of the

challenge bit b, and the experiment returns b′ as well. The corresponding advantages

of an adversary A are given by:

Advbh-cpa
SE (A) = Pr

[
Expbh-cpa-1

SE (A) = 1
]
− Pr

[
Expbh-cpa-0

SE (A) = 1
]
,

Advbh-sfcfa
SE (A) = Pr

[
Expbh-sfcfa-1

SE (A) = 1
]
− Pr

[
Expbh-sfcfa-0

SE (A) = 1
]
.

The scheme SE is said to be BH-CPA (or BH-sfCFA) secure, if for every adversary A
with reasonable resources its advantage Advbh-cpa

SE (A) (respectively Advbh-sfcfa
SE (A))

is small.

Analogously to the case of confidentiality, we can define a natural SBB variant of

this notion by replacing the stateful decryption oracle sfDec(·) in Fig. 6.8 with the

decryption oracle Dec(·) from Fig. 6.7. As before the resulting experiment, displayed

in Fig. 6.9, assumes properties that are specific to SBB schemes, and hence this

security notion is only meaningful for SBB schemes.

Definition 6.7: BH-sbbCFA. Let SE = (K, E ,D) be an encryption scheme sup-

porting fragmentation that is stateless-beyond-buffering. For an adversary A and a

bit b, define the experiment Expind-sbbcfa-b
SE (A) as depicted in Fig. 6.9. The experi-

ment starts by calling K to generate a key K and initialise the states. The adversary

A is given access to a special left-or-right encryption oracle LoR(·): on input two

vectors of messages, either the left or the right result is returned, but with the caveat

that the concatenation of ciphertexts is returned only if it has the same length in

both worlds (but note that we do not insist that the two vectors of messages contain

the same number of components). The adversary is additionally given a decryption

oracle Dec(·). It can query the decryption oracle on any sequence of ciphertext frag-

ments, except that the output corresponding to a ciphertext previously output by

the left-or-right oracle will be artificially suppressed.

The adversary’s goal is to output a bit b′, as its guess of the challenge bit b, and the

142

6.4 Boundary Hiding

Expbh-sbbcfa-b
SE (A)

(K,σ, %)← K
i← 0, F ← ε, C← ()

b′ ← ALoR(·),Dec(·)

return b′

LoR((m0,m1))

σ0 ← σ, σ1 ← σ
(c0, σ0)← EK(m0, σ0)
(c1, σ1)← EK(m1, σ1)
c0 ← ||(c0), c1 ← ||(c1)
if |c0| 6= |c1| then return
σ ← σb
for k = 1 to |cb|

i← i+ 1
Ci ← cb(k)

return cb

Dec(f)

M ← ε, prefix← 0
len← |f |
for k = 1 to len

(m, %)← DK(f [k], %)
m′ ← m′ ‖ m
F ← F ‖ f [k]
if % = ε and m′[|m′|] = ¶ then

if F ∈ C then m′ ← ε
M ←M ‖ m′
F ← ε,m′ ← ε

for all c ∈ C

if F � c = F then prefix← 1
if prefix = 0 then

M ←M ‖ m′,m′ ← ε
return M

Figure 6.9: Experiment to define BH-sbbCFA security.

143

6.4 Boundary Hiding

experiment returns b′ as well. We define the advantage of an adversary A as:

Advind-sbbcfa
SE (A) = Pr

[
Expind-sbbcfa-1

SE (A) = 1
]
− Pr

[
Expind-sbbcfa-0

SE (A) = 1
]
.

The scheme SE is said to be IND-sbbCFA secure, if for every adversary A with

reasonable resources its advantage Advind-sbbcfa
SE (A) is small.

It turns out that the above definition, which we argue is the natural analogue of the

boundary-hiding definition in the stateful setting, is unsatisfiable by any ‘reasonable’

SBB encryption scheme, see the note at the end of this section. As such our coverage

of boundary hiding in the SBB setting will be somewhat limited.

Relating Boundary Hiding to Indistinguishability. We now establish a few

relations between notions of boundary hiding and notions of indistinguishability

which we will use in later Sections. Theorem 6.1 states that for length-regular1

schemes boundary hiding implies left-or-right indistinguishability. Intuitively this

follows because the special left-or-right oracle in the BH-ATK notions can be used

to simulate the left-or-right oracle in the IND-ATK notions. The requirement on

length-regularity ensures that a valid query to the IND-ATK oracle results in a valid

query to the BH-ATK oracle. Other than that the proof is straightforward and we

omit it. Moreover, it is not too hard to show that BH-ATK is strictly stronger than

IND-ATK: take any IND-ATK secure scheme and append each ciphertext with a

special marker string, e.g., 1128.

Theorem 6.1: BH-ATK −→ IND-ATK. Let SE = (K, E ,D) be a length-regular

symmetric encryption scheme supporting fragmentation. For any ATK ∈ {CPA,

sbbCFA, sfCFA} and any IND-ATK adversary Aind there exists a BH-ATK adversary

Abh consuming similar resources to Aind such that:

Advind-atk
SE (Aind) ≤ Advbh-atk

SE (Abh) .

Intuitively the concatenation of multiple random strings is indistinguishable from a

1An encryption scheme is said to be length-regular if for all m1,m2 ∈ M where |m1| = |m2| it
holds (with probability 1) that |EncK(m1)| = |EncK(m2)| .

144

6.4 Boundary Hiding

single random string of the same length. It then follows that schemes having cipher-

texts indistinguishable from random strings should also hide ciphertext boundaries.

This is stated more formally, for the passive setting2, in the following theorem.

Again it is not hard to show that this implication is strict: take any BH-CPA secure

scheme and re-encode its ciphertexts by doubling every bit, i.e., 0→ 00 and 1→ 11.

Theorem 6.2: IND$-CPA −→ BH-CPA. Let SE = (K, E ,D) be a symmetric en-

cryption scheme supporting fragmentation. For any BH-CPA adversary Abh there

exists an IND$-CPA adversary Aind$ consuming similar resources to Abh such that:

Advbh-cpa
SE (Abh) ≤ 2 ·Advind$-cpa

SE (Aind$) .

Proof. For any adversary Abh we construct adversary Aind$ as follows. Adversary

Aind$ picks a bit d uniformly at random and then runs Abh. Then Aind$ uses this bit

and its own encryption oracle to simulate the special left-or-right encryption oracle

to Abh. That is, it uses d to pick the message vector, it encrypts each message in the

vector componentwise, and returns their concatenation. If Abh’s output is equal to

d, then Aind$ outputs 1 else it outputs 0. Now when Aind$ is run in the IND$-CPA

experiment with b = 1 it provides Abh with a perfect simulation of the BH-CPA

experiment with random bit d. Otherwise if b = 0 the responses to Abh’s queries are

completely independent to the bit d because they are random strings of appropriate

length. We thus have that:

Advind$-cpa
SE (Aind$) = Pr

[
Expind$-cpa-1

SE (Aind$) = 1
]
− Pr

[
Expind$-cpa-0

SE (Aind$) = 1
]

= Pr
[
d← {0, 1} : Expbh-cpa-d

SE (Abh) = d
]
− 1

2

=
1

2
+

1

2
·Advbh-cpa

SE (Abh)− 1

2

=
1

2
·Advbh-cpa

SE (Abh) .

2It can be shown that this implication does not hold in the stateful setting, in fact the stateful
InterMAC construction of Section 6.6.2 serves as a separating example.

145

6.4 Boundary Hiding

6.4.2 Unsatisfiability of SBB Boundary Hiding

We now outline a general attack, applicable to any practically relevant scheme,

showing that the BH-sbbCFA definition given in Figure 6.9 is unsatisfiable. The

reader is recommended to first refer to the next section where security against Denial

of Service attacks is introduced and defined.

Let SE = (K, E ,D) be any SBB encryption scheme supporting fragmentation that

is n-DOS-sbbCFA secure for some value n. Furthermore, let m1 and m2 be any

two messages such that |EK(m1)| < |EK(m2)| . An adversary can then query the

message-vector pair ([m1,m2], [m2,m1]) to the special left-or-right oracle and get a

concatenation of ciphertexts c∗. It then chops off the last |EK(m2)| bits from c∗ to

get c′, and submits the string c′‖c′‖. . .‖c′ (possibly in fragments) to the decryption

oracle. The number of copies of c′ that are included in this string is such that its

total length exceeds n. Now if c∗ corresponds to the first message vector then c′

will be a prohibited ciphertext and all output will be suppressed by the decryption

oracle. On the other hand if c∗ corresponds to the second message vector, then by the

correctness of the scheme c′ will not be a prohibited ciphertext and the concatenated

string is guaranteed to produce some output by the n-DOS-sbbCFA security of the

scheme. Thus the presence or absence of any output from the decryption oracle will

indicate to the adversary which message vector was encrypted.

While our formulation of BH-sbbCFA is quite natural, one could argue that the rea-

son it is unsatisfiable is because the set of prohibited ciphertexts C depends on the

challenge bit b. A possible workaround would be to additionally split the returned

concatenation of ciphertexts cb according to the lengths of the ciphertexts in c1−b,

and include the resulting set of ciphertexts in C as well. However we do not know if

this definition is satisfiable either. Accordingly it remains an open question whether

a meaningful and satisfiable definition of BH-sbbCFA is conceivable or not. More

generally, we do not know whether this limitation is due to our inability to formu-

late such a definition, or because the goal of boundary hiding inherently requires

protecting against replay and reordering attacks.

146

6.5 Denial of Service

6.5 Denial of Service

In this section we study fragmentation-related Denial-of-Service (DoS) attacks. This

is, to the best of our knowledge, the first formal treatment of DoS prevention as a

property of a symmetric encryption scheme. In Section 6.1 we mentioned an example

of a fragmentation-related attack that constitutes DoS. In that attack, by carefully

tampering with only a few bits in one of the transmitted ciphertexts, the adversary

managed to ‘confuse’ the decryption algorithm so that it would produce no output

until a huge amount of ciphertext is received. Informally this kind of attack is what

our security notions will attempt to capture. More specifically, we will equip the

adversary with an encryption oracle and a decryption oracle. Its goal will be to

produce a sequence of ciphertext fragments whose concatenation is at least n bits

long, where each of these fragments decrypts to the empty string. We will then

quantify the DoS security of a scheme via the minimum value of n such that no

‘efficient’ adversary is successful in producing such a sequence of fragments.

The countermeasure adopted by SSH to mitigate against such attacks (see Sec-

tion 3.2) is to limit the maximum ciphertext length to n bits; thereby ensuring that

the decryption algorithm will produce an output after at most n bits of ciphertext.

In the case of OpenSSH n is set to 221. We consider this to be a serious limitation

since it affects the usability of the scheme. If two parties wish to exchange large files,

it is understood that this may require waiting for large amounts of ciphertext before

recovering it at the receiver side, and this should be allowed. What we wish to avoid

is cases where the communicating parties are exchanging short messages, but the

adversary is able to tamper with the ciphertexts in such a way that the receiver has

to wait for a large amount of ciphertext before producing an output. Thus we aim

to formulate DoS security in a way that allows lowering n without necessarily re-

stricting the maximum message size in the message space. To accommodate this we

exclude trivial win conditions of the type where a passive adversary forwards cipher-

texts (or fragmentations thereof) of length n or higher from the encryption oracle

to the decryption oracle. In essence we will insist that the sequence of fragments

by which the adversary wins be generated by an active adversary. In the stateful

setting this means that we will require the ‘winning’ sequence of fragments to occur

after the adversary has become active. In the SBB setting, trivial win conditions

147

6.5 Denial of Service

will be trickier to catch. We now formulate the two definitions more precisely.

6.5.1 Security Definitions

Definition 6.8: n-DOS-sfCFA. Let SE = (K, E ,D) be an encryption scheme

supporting fragmentation. For an adversary A and a positive integer n, define the

experiment Expn-dos-sfcfa
SE (A) as depicted in Fig. 6.10. The experiment starts by

calling K to generate a key K and initialise the states. The adversary A is then

given access to an encryption oracle Enc(·), and a stateful decryption oracle sfDec(·).
The adversary’s goal is to submit to the stateful decryption oracle sfDec(·) an out-

of-sync sequence of fragments whose combined length is at least n bits, such that

all fragments return no output upon decryption. In the event that the adversary

succeeds, the experiment returns 1, and 0 otherwise. The output of the stateful

decryption oracle is never suppressed.

We define the advantage of an adversary A as:

Advn-dos-sfcfa
SE (A) = Pr

[
Expn-dos-sfcfa

SE (A) = 1
]
.

The scheme SE is said to be n-DOS-sfCFA secure, if for every adversary A with

reasonable resources its advantage Advn-dos-sfcca
SE (A) is small.

The initial lines of code in the decryption oracle work as before: their purpose is

to detect when the queries become out of sync, i.e. when the adversary becomes

active. Once the queries have become out of sync, the variable F is used to store

the last concatenation of out-of-sync fragments that did not return any output upon

decryption. If at any point the size of F exceeds n, the win flag is set. In the

case where the first out-of-sync fragment returns no output upon decryption, only

the out-of-sync portion of that fragment is stored in F . That is, we measure the

ciphertext from the point at which the tampering has occurred. This excludes trivial

win conditions, resulting say from a legitimately-produced long ciphertext (longer

than n bits) where the last bit is flipped by the adversary. Permitting such win cases

would also require limiting a scheme’s maximum message size for it to be secure.

We now define an analogous DoS security notion in the SBB setting. As before

148

6.5 Denial of Service

Expn-dos-sfcfa
SE (A)

(K,σ, %)← K
C ← ε, F ← ε, C← ()
i← 0, j ← 0
sync← 1,win← 0

AEnc(·),sfDec(·)

return win

Enc(m)

(c, σ)← EK(m,σ)
i← i+ 1, Ci ← c
return c

sfDec(f)

(m, %)← DK(f, %)
if sync = 1 then

F ← F ‖ f
while C � F = C and j < i

j ← j + 1
C ← C ‖ Cj

if F � C 6= F then
sync← 0
if m = ε then F ← F % C
else F ← ε

else
if m = ε then F ← F ‖ f
else F ← ε

if sync = 0 and |F | ≥ n then win← 1
return m

Figure 6.10: Experiment to define n-DOS-sfCFA security.

149

6.5 Denial of Service

we want to exclude win conditions where the adversary merely forwards (possibly

fragmented) ciphertexts from the encryption oracle to the decryption oracle. While

in the stateful setting the adversary is considered active if he reorders or replays

ciphertext, in the SBB setting we will consider this behaviour to be passive. Thus

adversarial strategies that exploit reorderings and replays are deemed invalid in the

SBB setting. This distinction between the stateful and SBB settings is present in all

security notions considered in this chapter. Adapting this ideology to DoS security,

if the winning sequence of fragments coincides with the start of a new ciphertext,

we do not want it to correspond to a fragmentation of a long ciphertext that was

previously output by the encryption oracle. Moreover, it should not be prefixed by

a previously-output ciphertext, or by a prefix of a previously-output ciphertext. A

sequence of fragments that satisfies these requirements is said to be non-trivial.

Definition 6.9: n-DOS-sbbCFA. Let SE = (K, E ,D) be an encryption scheme

supporting fragmentation. For an adversary A and a positive integer n, define the

experiment Expn-dos-sfcfa
SE (A) as depicted in Fig. 6.11. The experiment starts by

calling K to generate a key K and initialise the states. The adversary A is then

given access to an encryption oracle Enc(·), and a decryption oracle Dec(·). The

adversary’s goal is to submit to the decryption oracle Dec(·) a non-trivial sequence

of fragments whose combined length is at least n bits, such that all fragments return

no output upon decryption. In the event that the adversary succeeds, the experiment

returns 1, and 0 otherwise. The output of the decryption oracle is never suppressed.

We define the advantage of an adversary A in this experiment as:

Advn-dos-sbbcfa
SE (A) = Pr

[
Expn-dos-sbbcfa

SE (A) = 1
]
.

The scheme SE is said to be n-DOS-sbbCFA secure if, for every adversary A with

reasonable resources, its advantage Advn-dos-sbbcfa
SE (A) is small.

Once again we exploit literal decryption to decrypt ciphertext fragments incremen-

tally. This allows the decryption oracle to detect ciphertext boundaries in order to

filter out trivial win conditions. The variable F stores the concatenation of all ci-

phertext bits belonging to the current ciphertext. If the end of ciphertext is detected

(by checking for the condition where % = ε and m′[|m′|] = ¶), then F is reset. The

150

6.5 Denial of Service

Expn-dos-sbbcfa
SE (A)

(K,σ, %)← K
F ← ε, C← ()
i← 0, q ← 0
tmp← 0,win← 0

AEnc(·),Dec(·)

return win

Enc(m)

(c, σ)← EK(m,σ)
i← i+ 1, Ci ← c
return c

Dec(f)

M ← ε,m′ ← ε
len← |f |
for k = 1 to len

(m, %)← DK(f [k], %)
m′ ← m′ ‖ m
F ← F ‖ f [k]
if % = ε and m′[|m′|] = ¶ then

M ←M ‖ m′
F ← ε,m′ ← ε

if M ‖ m′ 6= ε then q ← |F |
if |F | − q ≥ n then

tmp← 1
for all c ∈ C

if |F % c| < n then tmp← 0
win← tmp

return M ‖ m′

Figure 6.11: Experiment to define DOS-sbbCFA security.

151

6.6 Constructions

variable q points to the end of the last received fragment within F that produced an

output. Each time a fragment is received the decryption oracle checks whether the

concatenation of fragments that did not produce an output, i.e. F [q + 1, |F |], is at

least n bits long. If so it further verifies that after all possible replayed ciphertext

prefixes are removed, it still is at least n bits long.

A Note on DoS and Ciphertext Integrity. In an attempt to limit our scope

we did not formulate a notion of ciphertext integrity for schemes supporting frag-

mentation. Nonetheless, we wish to emphasise that DoS security does not imply

ciphertext integrity, nor the other way round. While a notion of ciphertext integrity

would ensure that an adversarially generated ciphertext is never accepted, it does

not guarantee at which point it will be rejected. Thus, as in the case of SSH, it may

be that a ciphertext can only be rejected once the (possibly very large) ciphertext

has been received in full. On the other hand, if a scheme is n-DOS-sfCFA secure

it does not guarantee that adversarially generated ciphertexts will be rejected. We

purposefully chose to maintain this separation between the two notions, as we feel

that the two security goals are rather different. This said, a combination of the two

security notions has practical significance, since it guarantees that any tampering in

the communication would be detected within n bits. Intuitively it is easy to see that

the InterMAC constructions, presented in the next section, achieve this combined

security goal.

6.6 Constructions

6.6.1 Applying Instantaneously Decodable Postprocessing (IDP)

We now present a simple transformation for converting a symmetric encryption

scheme to an encryption scheme that supports ciphertext fragmentation. In addition

we will see that if the scheme that we start with is IND-sfCCA secure, then the

constructed scheme will be IND-sfCFA secure. Similarly if we start with a scheme

that is IND-CCA secure, the constructed scheme will satisfy IND-sbbCFA security.

The construction will make use of an instantaneously decodable encoding scheme.

Later we will see that if we allow the encoding scheme to be keyed and probabilistic,

152

6.6 Constructions

the construction can in addition achieve boundary hiding against passive adversaries.

Accordingly, within the scope of this chapter, we will extend the syntax of encoding

schemes as follows.

Generalised Encoding Schemes. An encoding scheme ES = (Kc, EC,DC) is a

triple of algorithms with an associated word space W ⊆ {0, 1}∗. The randomised

key-generation algorithmKc takes no input and returns a secret keyK. The encoding

algorithm EC, which may be probabilistic, takes as input a secret key K and a word

w ∈ W to return a codeword u ∈ {0, 1}∗. The deterministic decoding algorithm

DC takes as input a secret key K and a codeword u ∈ {0, 1}∗ to return a word

w ∈ W ∪ {ε}, possibly followed by other outputs. For any key K, we denote the

range of the encoding algorithm by ECK(W) .

Definition 6.10: Instantaneous Decodability. An encoding scheme ES =

(Kc, EC,DC) with associated word space W ⊆ {0, 1}∗, is said to be instantaneously

decodable if for all keys K that can be output by Kc , it holds that:

1. For all w ∈ W, and all s ∈ {0, 1}∗, if u← ECK(w) then (w, s)← DCK(u ‖ s).

2. For all s ∈ {0, 1}∗, if no u ∈ ECK(W) is a prefix of s then (ε, s)← DCK(s).

Note that instantaneous decodability does not require the encoding scheme to be

keyed. In fact any keyless encoding scheme that is prefix-free is also instantaneously

decodable. Later in this section we will give an example of a keyed encoding scheme

that is instantaneously decodable. Throughout we assume that Kc, EC, and DC are

efficiently computable algorithms.

Construction 6.1: The IDP Construction. Let SE = (Ke, E ,D) be a sym-

metric encryption scheme with associated message space M and ciphertext space

C. Let ES = (Kc, EC,DC) be an instantaneously decodable encoding scheme with

an associated word space that contains C. Then the construction specified in Fig-

ure 6.12 yields an encryption scheme supporting fragmentation SE = (K, E ,D) with

an associated message spaceM. Furthermore if SE is stateless, then SE is stateless

153

6.6 Constructions

Algorithm K

Kc ← Kc
(Ke, σ, %)← Ke
K ← Kc ‖ Ke

return (K,σ, (%, ε))

Algorithm EK(m,σ)

(c, σ)← EKe(m,σ)
u← ECKc(c)
return (u, σ)

Algorithm DK(f, (%, α))

m′ ← ε, w ← f
α← α ‖ f
while (w 6= ε)

(w,α)← DCKc(α)
if (w 6= ε) then

(m, %)← DKe(w, %)
m′ ← m′ ‖ m ‖ ¶

return (m′, (%, α))

Figure 6.12: The constructed scheme SE using instantaneously decodable post-
pocessing.

beyond buffering.

Correctness of the constructed scheme SE follows immediately from the correctness

of SE and the instantaneous decodability of ES . Furthermore if SE ’s decryption

algorithm is stateless, the only state that D maintains is the buffer α. Now the buffer

is always initialised to ε , and it is easy to see that after decrypting any complete

ciphertext, the buffer will always be empty. Finally, because all submitted fragments

are appended to the buffer from which ciphertexts are then extracted and submitted

to D, decryption is independent of the fragmentation pattern. Hence the scheme

also satisfies literal decryption, and consequently is stateless beyond buffering.

Note that by instantiating the encoding scheme with a prefix-free encoding, we

get a very efficient transformation for converting a ‘standard’ symmetric encryption

scheme to an encryption scheme that supports fragmentation. We next show the nice

property that if we start from a scheme that is IND-sfCCA secure, the transformation

yields a scheme that is IND-sfCFA secure.

Theorem 6.3: IDP is IND-sfCFA secure. Let SE = (K, E ,D) be the scheme from

Construction 6.1, composed from a symmetric encryption scheme SE = (Ke, E ,D)

and an instantaneously decodable encoding scheme ES = (Kc, EC,DC). Then for any

IND-sfCFA adversary Asfcfa against SE, there exists an IND-sfCCA adversary Asfcca

154

6.6 Constructions

against SE such that:

Advind-sfcfa
SE (Asfcfa) ≤ Advind-sfcca

SE (Asfcca) , (6.1)

where Asfcca consumes similar resources to Asfcfa.

Proof. For any adversary Asfcfa we construct adversary Asfcca as follows. Adversary

Asfcca runs Kc to generate an encoding key and then runs Asfcfa . It then uses

the encoding key together with its left-or-right oracle to simulate Asfcfa’s left-or-

right oracle as per Construction 6.1, keeping record of the ciphertexts it returns.

Asfcfa’s decryption queries are handled by maintaining a buffer to which the queried

fragments are appended. Then Asfcca repeatedly applies the decoding algorithm to

the buffer until no codeword can be extracted, and submits the codewords, in the

same order, to its own stateful decryption oracle. When the queries become out

of sync, the returned messages are appended with ¶, concatenated together, and

the resulting string is returned to Asfcfa. Asfcca uses its records to keep track of

when Asfcfa’s queries become out of sync. This is necessary since the first out of

sync query might correspond to an encryption of ε, and Asfcfa would not be able to

distinguish this case from a message being suppressed because it is in sync. Finally

Asfcca outputs whatever Asfcfa outputs.

From the instantaneous decodability of ES it follows that Asfcca’s decryption queries

will be in sync if and only if Asfcfa’s decryption queries are in sync. Therefore Asfcca

provides Asfcfa with a perfect simulation of its environment. Thus:

Pr
[
d←$ {0, 1} : Expind-sfcfa-d

SE (Asfcfa) = d
]
≤

Pr
[
b←$ {0, 1} : Expind-sfcca-b

SE (Asfcca) = b
]
,

and equation (6.1) follows.

The following analogous theorem is implied by a similar proof which we omit to

avoid repetition.

Theorem 6.4: IDP is IND-sbbCFA secure. Let SE = (K, E ,D) be the scheme

from Construction 6.1, composed from a symmetric encryption scheme SE = (Ke, E ,D)

155

6.6 Constructions

Exprpe-b
ES (A)

K ← Kc
b′ ← AEoR(·)

return b′

EoR(`)

w ←$ {0, 1}`
u← ECK(w)
if b = 0 then

u←$ {0, 1}|u|
return u

Figure 6.13: Experiment to define randomness preserving encodings.

with stateless decryption, and an instantaneously decodable encoding scheme ES =

(Kc, EC,DC). Then for any IND-sbbCFA adversary Asbbcfa against SE, there exists

an IND-CCA adversary Acca against SE such that:

Advind-sbbcfa
SE (Asbbcfa) ≤ Advind-cca

SE (Acca) ,

where Acca consumes similar resources to Asbbcfa.

Construction 6.1 shows that IND-sfCFA and IND-sbbCFA security are not hard to

attain. However when we instantiate the encoding scheme with a prefix free en-

coding, ciphertext boundaries will inevitably be revealed. While this is what allows

the constructed scheme to support ciphertext fragmentation, it obviously conflicts

with the goal of boundary hiding. We partly solve this conflict by employing a

keyed encoding scheme, which reveals ciphertext boundaries solely to the holder of

the encoding key. We now formulate a security property for encoding schemes that

will allow Construction 6.1 to achieve IND$-CPA security, and by Theorem 6.2 hide

ciphertext boundaries from passive adversaries.

Definition 6.11: Randomness Preserving Encodings. Let L be a non-empty

set of positive integers, and let ES = (Kc, EC,DC) be an encoding scheme with

associated word space W =
⋃
`∈L{0, 1}`. For an adversary A and a bit b define

the experiment Exprpe-b
ES (A) as shown in Figure 6.13. The experiment starts by

calling Kc to generate an encoding key Kc. The adversary A is then given access

to an encode-or-random oracle EoR(·), that it can query on any length value ` ∈ L.

Depending on the value of b, the oracle will either return an encoding of a random

string of length `, or a random string of the same length as that encoding. The

156

6.6 Constructions

adversary’s goal is to output a bit b′, as its guess of the challenge bit b, and the

experiment returns b′ as well. We define the adversary’s rpe-advantage as:

Advrpe
ES (A) = Pr

[
Exprpe-1

ES (A) = 1
]
− Pr

[
Exprpe-0

ES (A) = 1
]
.

The encoding scheme ES is said to be a randomness preserving encoding (RPE)

scheme, if for every adversary A with reasonable resources its advantage Advrpe
ES (A)

is small.

Theorem 6.5: IDP is IND$-CPA secure. Let SE = (Ke, E ,D) be a symmet-

ric encryption scheme with associated message space M and ciphertext space C.

Let ES = (Kc, EC,DC) be an encoding scheme with an associated word space that

contains C. Define the encryption scheme supporting fragmentation SE = (K, E ,D)

according to Construction 6.1. For any IND$-CPA adversary Aind$ against SE, there

exist adversaries A′ind$ and Arpe such that:

Advind$-cpa

SE (Aind$) ≤ Advind$-cpa
SE (A′ind$) + Advrpe

ES (Arpe) , (6.2)

where A′ind$ and Arpe consume similar resources to Aind$.

Proof. To prove Theorem 6.5 we introduce we introduce a hybrid experiment ExpH,

similar in spirit to the two IND$-CPA experiments corresponding to each bit value.

The hybrid experiment proceeds exactly as Expind$-cpa-1
SE , except that the encryption

oracle returns encodings of random strings instead. More specifically, after comput-

ing an encryption under SE of the queried message, it picks uniformly at random

a string of the same length as the ciphertext, and returns an encoding under ES of

this string instead. We then have that:

Advind$-cpa

SE (Aind$) =
(

Pr
[

Expind$-cpa-1
SE (Aind$) = 1

]
− Pr [ExpH(Aind$) = 1]

)
+
(

Pr [ExpH(Aind$) = 1]− Pr
[

Expind$-cpa-0
SE (Aind$) = 1

])
. (6.3)

Now we consider each of the above terms in the braces separately. For any adversary

Aind$ distinguishing between the two experiments in the first term, we construct

an IND$-CPA adversary A′ind$ against SE . Adversary A′ind$ runs Kc to obtain an

encoding key and then runs Aind$. It then simulates Aind$’s encryption oracle in

accordance with the IDP construction, except that it uses its own oracle to compute

157

6.6 Constructions

encryptions under SE . It then outputs whatever Aind$ outputs. Note that when

A′ind$’s oracle returns real ciphertexts, it provides Aind$ with a perfect simulation of

the IND$-CPA experiment with a bit value of one. Alternatively when A′ind$’s oracle

returns random strings, it provides Aind$ with a perfect simulation of the hybrid

experiment. Hence:

Pr
[

Expind$-cpa-1
SE (Aind$) = 1

]
− Pr [ExpH(Aind$) = 1] ≤ Advind$-cpa

SE (A′ind$)
(6.4)

Similarly, for any adversary Aind$ distinguishing between the two experiments in

the second term, we construct an RPE adversary Arpe against ES . Adversary Arpe

runs Ke to obtain an encryption key and then runs Aind$. It simulates Aind$’s

encryption oracle by computing an encryption of the queried message under SE ,

it then queries its own oracle with the length of this ciphertext and forwards the

response to Aind$. It then outputs whatever A′cpa outputs. When Arpe’s oracle

returns encodings of random strings, it provides Aind$ with a perfect simulation of

the hybrid experiment. Otherwise when Arpe’s oracle returns random strings, it

provides Aind$ with a perfect simulation of the IND$-CPA experiment with a bit

value of zero. Therefore:

Pr [ExpH(Aind$) = 1]− Pr
[

Expind$-cpa-0
SE (Aind$) = 1

]
≤ Advrpe

ES (Arpe) . (6.5)

Combining equations (6.3),(6.4), and (6.5) yields equation (6.2), as desired.

We now complete the IDP construction by showing a simple instantiation of an

encoding scheme that is both instantaneously decodable and randomness preserving.

The encoding scheme is constructed from a pseudorandom function family mapping

n bit strings to l bit strings, and is presented in Figure 6.14.

Theorem 6.6: IDP Instantiation. Let F : K × {0, 1}n → {0, 1}l be a function

family indexed by the set K. Then Figure 6.14 defines an instantaneously decodable

encoding scheme ES = (Kc, EC,DC) with word space W =
⋃
`≤ l{0, 1}`. Moreover,

for any RPE adversary Arpe against ES making at most q queries, there exists a

PRF adversary Aprf such that:

Advrpe
ES (Arpe) ≤ Advprf

F (Aprf) +

(
q2

2n+1

)
, (6.6)

where adversary Aprf consumes similar resources to Arpe.

158

6.6 Constructions

Algorithm Kc
K ←$K
return K

Algorithm ECK(w)

x←$ {0, 1}n
y ← 〈|w|〉l ⊕ FK(x)
u← x ‖ y ‖ w
return u

Algorithm DCK(u)

if |u| ≤ n+ l then
return (ε, u)

len← FK(u[1, n])⊕ u[n+ 1, l]
if |u| − n− l < len then

return (ε, u)
w ← u[n+ l + 1, n+ l + len]
z ← u[n+ l + len + 1, |u|]
return (w, z)

Figure 6.14: The encoding scheme of Theorem 6.6 that is both instantaneously
decodable and randomness preserving.

Proof. We first outline why the encoding scheme is instantaneously decodable. Note

that the decoding algorithm first recovers the length field and then uses this value

to determine where the codeword ends. Thus the first requirement of Definition 6.10

is satisfied. As for the second requirement, note that the only case where the input

string s is not prefixed by a valid code word is either when its length is less than

or equal to n + l, or the recovered length value is greater than the length of the

remaining string. In both cases the decoding algorithm returns (ε, s), as required.

We now prove that the encoding scheme is randomness preserving. To do this, we

show that from any RPE adversary Arpe, we can build a PRF adversary Aprf against

F . Adversary Aprf runs Arpe, and simulates its oracle by sampling random strings of

the queried length and encoding them according to the construction of Figure 6.14

and computing PRF values using its own oracle. Aprf keeps a record of all the n bit

strings that it samples, and if at any point a collision occurs it outputs 0 and halts.

Otherwise Aprf outputs whatever Arpe outputs. Note that when Aprf is instantiated

with F , it responds to Arpe’s queries with real encodings of random strings. On the

other hand if its oracle is a random function it returns uniformly random strings

(since it never queries its oracle on the same value more than once). Let Zb represent

the event Exprpe-b
ES (Arpe) = 1, and let E represent the event that a collision occurs

159

6.6 Constructions

when sampling n bit strings. Then we have that:

Advrpe
ES (Arpe) = Pr

[
Z1 ∧ E

]
− Pr

[
Z0 ∧ E

]
+
(
Pr
[
Z1 ∧ E

]
− Pr

[
Z0 ∧ E

])
≤ Pr

[
Z1 ∧ E

]
− Pr

[
Z0 ∧ E

]
+ Pr [E] .

Applying a birthday bound to E, and substituting for the other terms we get:

Advrpe
ES (Arpe) ≤ Pr

[
K ←$K : AFK(·)

prf = 1
]

− Pr
[
f ←$ Func(n, l) : Af(·)

prf = 1
]

+

(
q2

2n+1

)
. (6.7)

Equation (6.6) then follows from equation (6.7).

The IDP construction is attractive in terms of efficiency, modularity, and versatility.

If we look at prior constructions, we see that achieving confidentiality and hiding

boundaries while supporting fragmentation was already a source of conflict. Consider

SSH for instance. Its effort to encrypt the length field can be interpreted as an

attempt to hide boundaries. When instantiated with CBC encryption, it is easy to

see that SSH achieves BH-CPA security, but as evidenced by the attack from [1] (see

Section 3.5) it is insecure in the IND-sfCFA sense. Alternatively if we look at TLS, the

result of [78] implies that it is IND-sfCCA secure. Moreover the length field contained

in the header works as a prefix free encoding, and therefore by Theorem 6.3, TLS

is IND-sfCFA secure. However since the header is in cleartext the scheme obviously

does not achieve BH-CPA security.

6.6.2 The InterMAC Construction

We now move to a more ambitious goal, to simultaneously achieve all three of our

security notions. In comparison to the IDP construction and SSH, we now addition-

ally consider boundary hiding against active adversaries and DoS security. None of

the schemes considered thus far achieve boundary hiding in the active setting. To see

the difficulty with this consider once more the case of SSH. Given a concatenation

of ciphertexs, the adversary can now flip the first bit and submit it bit by bit to its

decryption oracle until an error is returned, which marks the first ciphertext bound-

ary. In addition to achieving boundary hiding security in the active setting, the

160

6.6 Constructions

Algorithm K

(Ke, σe, %e)← Ke
Km ← Km
K ← Ke ‖ Km

σ ← (σe, 0)
%← (%e, ε, ε, 0, 0, 0)
return (K,σ, %)

Algorithm EK(m, (σe, i))

c← ε, b← 0, i← i+ 1
for j = 1 to |m|/`m

p← 1 + (j − 1).`m
q ← j.`m
m′ ← m[p, q]
if q = |m| then b← 1
(c′, σe)← EKe(b ‖ m′, σe)
τ ← TKm(〈i〉 ‖ 〈j〉 ‖ c′)
c← c ‖ c′ ‖ τ

return (c, (σe, i))

Algorithm DK(f, (%e, α,m, i, j, fail))

w ← ε, α← α ‖ f
while |α| ≥ N

c← α[1, `c], τ ← α[`c + 1, N]
α← α[N + 1, |α|]
j ← j + 1
v ← VKm(〈i〉 ‖ 〈j〉 ‖ c, τ)
if v =⊥ and fail = 0 then

w ← w ‖⊥, fail← 1
else if fail = 1 then

w ← w ‖⊥
else

(m′, %e)← DKe(c, %e)
m← m ‖ m′[2, `m + 1]
if m′[1] = 1 then

w ← w ‖ m ‖ ¶
i← i+ 1, j ← 0,m← ε

return (w, (%e, α,m, i, j, fail))

Figure 6.15: The stateful InterMAC construction IM.

scheme that we present in this section also achieves N -DOS-sfCFA security without

limiting the maximum message size to N bits.

Our proposed scheme breaks a message into equal-sized segments and encrypts them

separately. It then appends a MAC tag to each intermediate ciphertext and con-

catenates them to produce the final ciphertext. The sender and receiver keep a state

which contains a message and a segment number to be used in the MAC computa-

tion. Each segment uses a bit flag to indicate the last segment in a message. We

now describe the construction in more detail.

Construction 6.2: InterMAC. Let SE = (Ke, E ,D) be a symmetric encryption

scheme such that its message space contains {0, 1}`m+1, for some desired `m ∈ N.

Furthermore let E be length-regular, such that it maps all messages of length `m

to ciphertexts of length `c. Let MA = (Km, T ,V) be a message authentication

code with associated tag length `tag and message space {0, 1}∗. Then the state-

ful InterMAC construction, specified in Figure 6.15, yields an encryption scheme

161

6.6 Constructions

supporting fragmentation IM = (K, E ,D) with message space {{0, 1}`m}+. The

ciphertext segment size N associated to the stateful InterMAC construction is given

by N = `c + `tag.

At first sight Figure 6.15 may seem daunting. Accordingly we now give an informal

description. Each message is split into chunks of `m bits, a bit is then prepended to

each chunk and encrypted separately. For all chunks of plaintext except the last, the

prepended bit is set to zero. For each of these ciphertexts c′, a MAC tag is computed

over the concatenation of the encoded message counter 〈i〉, the encoded segment

index 〈j〉, and the ciphertext. These ciphertext-tag pairs are then concatenated

to yield the final ciphertext. Decryption starts by appending the input ciphertext

fragment f to the buffer string α, and resetting the output plaintext string w. The

while loop then extracts ciphertext segments from the buffer one at a time. Each

segment is parsed into a ciphertext and a MAC tag, and the tag is then verified.

The returned output string w is then constructed as follows. For valid ciphertexts,

i.e. ciphertexts where all segments contain a valid tag, the plaintext is only returned

when the last ciphertext segment has been received. Alternatively, once an invalid

segment is encountered, the⊥ symbol is returned for that segment and every segment

(irrespective of its validity) that is received thereafter.

Theorem 6.7: InterMAC is N-DOS-sfCFA secure. Let IM = (K, E ,D) be the

InterMAC scheme from Construction 6.2, composed from a symmetric encryption

scheme SE = (Ke, E ,D) and message authentication codeMA = (Km, T ,V). Let its

segment size be N . Then for any N -DOS-sfCFA adversary Ados against IM, there

exists a UF-CMA adversary Auf against MA such that:

AdvN-dos-sfcfa
IM (Ados) ≤ Advuf-cma

MA (Auf) , (6.8)

where Auf consumes similar resources to Ados.

Proof. Consider the Expn-dos-sfcfa
IM (Ados) experiment for n = N . At any point in

time, let F ∗ be the concatenation of all ciphertext fragments queried by Ados, and

let u be the largest non-negative integer such that the substring F ∗[1, uN] is in

sync. Let E represent the event that |F ∗| ≥ (u + 1)N and sfDec(·) did not return

162

6.6 Constructions

any output after receiving the first ((u + 1)N) bits. For the case of InterMAC, if

the adversary wins the experiment then E must have occurred. We now bound the

probability of event E occurring, by constructing an adversary Auf that breaks the

UF-CMA security of MA.

Adversary Auf runs Ke to get an encryption key and initialise the states. It then runs

Ados and uses the encryption key together with its tagging oracle to simulate Ados’s

encryption oracle (as per Construction 6.2). In addition it maintains an ordered

list of all the ciphertexts it returns, together with their corresponding messages.

Ados’s decryption queries are then handled as follows. Auf maintains the string

F ∗ (as defined above), and uses it together with the other list to keep track of

when Ados becomes active. Moreover it maintains the decryption counters i and

j (as per Construction 6.2). While Ados’s queries are in sync, it uses its list to

simulate the decryption oracle. When it happens that |F ∗| ≥ (u + 1)N , it parses

F ∗[uN + 1, (u+ 1)N] into a ciphertext c and a MAC tag τ , submits the pair (〈i〉 ‖
〈j〉 ‖ c, τ) to its verification oracle, and halts.

Note that until |F ∗| ≥ (u+ 1)N happens, Auf’s simulation of Ados’s environment is

perfect. Moreover, counters i and j ensure that the only possible time where Auf

queried a string with these values is when it computed the tag for the jth segment

of the ith ciphertext (if such a segment existed). However, since MA is a MAC

and by assumption F ∗[uN + 1, (u+ 1)N] does not match that segment, it must be

that the corresponding ciphertext components do not match either. It thus follows

that whenever E occurs, Auf produces a valid MAC forgery and wins the UF-CMA

experiment. We then have that:

Pr
[

ExpN-dos-sfcfa
IM (Ados)) = 1

]
≤ Pr [E] ≤ Pr

[
Expuf-cma

MA (Auf) = 1
]
,

and equation (6.8) thus follows.

Note that we only have BH-sfCFA security left to prove, since IND-sfCFA security

will then be implied by Theorem 6.1.

Theorem 6.8: InterMAC is BH-sfCFA secure. Let IM = (K, E ,D) be the

InterMAC scheme from Construction 6.2, composed from a symmetric encryption

scheme SE = (Ke, E ,D) and message authentication code MA = (Km, T ,V). Then

163

6.6 Constructions

ExpAb
SE(A)

(K,σ, %)← K
j ← 1, sync← 1
C ← ε, F ← ε

b′ ← ALoR(·),sfDec(·)

return b′

LoR((m0,m1))

σ0 ← σ, σ1 ← σ
(c0, σ0)← EK(m0, σ0)
(c1, σ1)← EK(m1, σ1)
c0 ← ||(c0), c1 ← ||(c1)
if |c0| 6= |c1| then return
σ ← σb, C ← C ‖ cb
return cb

sfDec(f)

m← ε, F ← F ‖ f
while |F | − jN ≥ 0

p← 1 + (j − 1)N, q ← jN
if sync = 1 then

if F [p, q] 6= C[p, q] then
sync← 0,m←⊥

else
m← m ‖⊥

j ← j + 1
return m

Figure 6.16: The auxiliary experiment used to prove Theorem 6.8.

for any BH-sfCFA adversary Asfcfa against IM, there exists adversaries Acpa, Aprf,

and Auf such that:

1

2
·Advbh-sfcfa

IM (Asfcfa) ≤ Advind$-cpa
SE (Acpa)+Advprf

T (Aprf)+Advuf-cma
MA (Auf) , (6.9)

where all three adversaries consume similar resources to Asfcfa.

Proof. We will prove Theorem 6.8 in two parts. For the first part of the proof we will

make use of the auxiliary experiment ExpAb
IM of Figure 6.16. This is essentially

the Expbh-sfcfa-b
IM experiment with a modified stateful decryption oracle. Now the

stateful decryption oracle does not return any output until the queries become out

of sync, at which point it returns ⊥ at every N -bit boundary of ciphertext that

it receives. At any point in time, let F ∗ be the concatenation of all ciphertext

fragments queried by Asfcfa, and let u be the largest non-negative integer such that

the substring F ∗[1, uN] is in sync. Let E represent the event that in the BH-sfCFA

experiment |F ∗| ≥ (u + 1)N and sfDec(·) did not return ⊥ after receiving the first

((u+1)N) bits. Let W denote the event Expbh-sfcfa-b
IM (Asfcfa) = b and let WA denote

the event ExpAd
IM(Asfcfa) = d, where bits b and d are picked uniformly at random.

164

6.6 Constructions

We thus have that:

Pr [W]− Pr
[
WA

]
= Pr [W ∧ E] + Pr

[
W ∧ E

]
− Pr

[
WA

]
.

Due to the details of the InterMAC construction, the two experiments are identical
if E does not occur. Bounding Pr

[
E
]
, cancelling equal terms, and then bounding

Pr [W ∧ E] yields:

Pr [W]− Pr
[
WA

]
≤ Pr [W ∧ E] + Pr

[
W | E

]
− Pr

[
WA

]
≤ Pr [W ∧ E]

≤ Pr [E] . (6.10)

Using a reduction similar to that in the proof of Theorem 6.7, it follows that there

exists a UF-CMA adversary Auf such that:

Pr [E] ≤ Advuf-cma
MA (Auf) . (6.11)

Combining equations (6.10) and (6.11), and then multiplying by two and subtracting

one on each side of the inequality, yields:

Advbh-sfcfa
IM (Asfcfa) ≤

(
2 · Pr

[
WA

]
− 1
)

+ 2 ·Advuf-cma
MA (Auf) . (6.12)

Now from any adversary Asfcfa, we can construct a BH-CPA adversary A′′cpa against

IM as follows. A′′cpa runs Asfcfa, and forwards its encryption queries to its own

encryption oracle while keeping record of all ciphertexts that it returns. Decryption

queries are handled by running the sfDec(·) algorithm of Figure 6.16. Finally A′′cpa
outputs whatever Asfcfa outputs. Note that A′′cpa provides Asfcfa with a perfect

simulation of the auxiliary experiment. It then follows that:

Pr
[
WA

]
= Pr

[
d←$ {0, 1} : Expbh-cpa-d

IM (A′′cpa) = d
]
. (6.13)

Combining equations (6.12) and (6.13), we obtain:

Advbh-sfcfa
IM (Asfcfa) ≤ Advbh-cpa

IM (A′′cpa) + 2 ·Advuf-cma
MA (Auf) , (6.14)

and then applying Theorem 6.2 yields:

Advbh-sfcfa
IM (Asfcfa) ≤ 2 ·Advind$-cpa

IM (A′cpa) + 2 ·Advuf-cma
MA (Auf) . (6.15)

We now move to the second part of the proof and bound the advantage of A′cpa.

Towards this aim we introduce a hybrid experiment ExpH, similar in spirit to the

165

6.6 Constructions

two IND$-CPA experiments corresponding to each bit value. The hybrid experiment

proceeds exactly as Expind$-cpa-1
IM , except for one detail. In the encryption oracle, for

every ciphertext segment, the MAC tag is replaced with a uniformly random string

of length `tag. Then we have that:

Advind$-cpa
IM (A′cpa) =

(
Pr
[

Expind$-cpa-1
IM (A′cpa) = 1

]
− Pr

[
ExpH(A′cpa) = 1

])
+
(

Pr
[
ExpH(A′cpa) = 1

]
− Pr

[
Expind$-cpa-0

IM (A′cpa) = 1
])

. (6.16)

Now consider each of the above terms in the braces separately. For any adversary

A′cpa distinguishing between the two experiments in the first term, we can associate

a PRF adversary Aprf against T . Adversary Aprf runs Ke to obtain an encryption

key and initialise the states, and then runs A′cpa . It simulates its encryption oracle in

accordance with the InterMAC scheme, except that it uses its own oracle to compute

the MAC tags. It then outputs whatever A′cpa outputs. Note that if Aprf’s oracle is

instantiated with T , it perfectly simulates a ‘real’ encryption oracle for A′cpa . On

the other hand if its oracle is a random function it simulates the encryption oracle

of the hybrid experiment, as long as it does not query the random function on the

same input more than once. The counters in the InterMAC construction guarantee

that this never occurs. Therefore:

Pr
[

Expind$-cpa-1
IM (A′cpa) = 1

]
− Pr

[
ExpH(A′cpa) = 1

]
≤ Advprf

T (Aprf) . (6.17)

Similarly for any adversary A′cpa distinguishing between the two experiments in

the second term we construct an IND$-CPA adversary Acpa against SE . Adversary

Acpa runs A′cpa simulating its encryption oracle in accordance with the InterMAC

scheme, except that it uses its own oracle to compute encryptions under SE , and

replaces tag values with random strings of length `tag . It then outputs whatever

A′cpa outputs. When Acpa’s oracle returns real ciphertexts, it provides A′cpa with

a perfect simulation of the hybrid experiment. Alternatively when Acpa’s oracle

returns random strings, it provides A′cpa with a perfect simulation of the IND$-CPA

experiment with a bit value of zero. Hence:

Pr
[

ExpH(A′cpa) = 1
]
− Pr

[
Expind$-cpa-0

IM (A′cpa) = 1
]
≤ Advind$-cpa

SE (Acpa) .

(6.18)

Combining equations (6.15),(6.16),(6.17), and (6.18) yields (6.9), as desired.

166

6.6 Constructions

Algorithm K

(Ke, σ, ε)← Ke
Km ← Km
K ← Ke ‖ Km

%← (ε, ε, 0)
return (K,σ, %)

Algorithm EK(m,σ)

c← ε, τ ← 0`tag , b← 0
for j = 1 to |m|/`m

p← 1 + (j − 1).`m
q ← j.`m
m′ ← m[p, q]
if q = |m| then b← 1
(c′, σ)← EKe(b ‖ m′, σ)
τ ← TKm(τ ‖ c′)
c← c ‖ c′ ‖ τ

return (c, σ)

Algorithm DK(f, (α,m, τ0))

w ← ε, α← α ‖ f
while |α| ≥ N

c← α[1, `c], τ ← α[`c + 1, N]
α← α[N + 1, |α|]
v ← VKm(τ0 ‖ c, τ)
τ0 ← τ
if v =⊥ and m 6= � then

w ← w ‖⊥,m← �
else if m = � then

w ← w ‖⊥
else

(m′, %e)← DKe(c, ε)
m← m ‖ m′[2, `m + 1]
if m′[1] = 1 then

w ← w ‖ m ‖ ¶
τ0 ← 0`tag ,m← ε

return (w, (α,m, τ0))

Figure 6.17: The stateless beyond buffering InterMAC construction IM∗.

6.6.3 A SBB Variant of InterMAC

Construction 6.3: SBB InterMAC. Let SE = (Ke, E ,D) be a symmetric

encryption scheme with stateless decryption, having a message space containing

{0, 1}`m+1 for some desired `m ∈ N, and error space S⊥. Furthermore let E be

length-regular, such that it maps all messages of length `m to ciphertexts of length

`c. Let MA = (Km, T ,V) be a message authentication code with associated tag

length `tag and message space {0, 1}∗. Let � be such that � 6∈ S⊥. Then the SBB

InterMAC construction, specified in Figure 6.17, yields an SBB encryption scheme

supporting fragmentation IM∗ = (K, E ,D) with message space {{0, 1}`m}+. The

ciphertext segment size N associated to the stateful InterMAC construction is given

by N = `c + `tag.

The above construction works analogously to its stateful counterpart, with a few

exceptions. Counters are no longer maintained, and are therefore not included in

167

6.6 Constructions

the MAC tag computation and verification. Instead, the tag of the previous segment

is prepended to the ciphertext when computing the MAC tag. For the purpose of

computing the tag in the first segment of each ciphertext, the previous tag value

is set to 0`tag . In decryption, the fail flag has been dropped, and we now set m to

the special symbol � instead. Thus as before, once an invalid MAC tag is detected,

the decryption algorithm always returns ⊥ from that point onwards. Note that this

does not violate the SBB definition, see Section 6.2.2. Finally, the construction

assumes an invertible encoding mapping the triple (α,m, τ0) to a single string, such

that (ε, ε, 0`tag) is mapped to the empty string. This technicality is required for the

scheme to satisfy the SBB definition. Note that the decryption state does not contain

more information than a buffer storing all bits pertaining to the ciphertext being

decrypted. In fact it would have been functionally equivalent to let the decryption

state be such a buffer, flushed only when the end of a ciphertext is found, and

compute (α,m, τ0) from this buffer each time the decryption algorithm is invoked.

However we chose this implementation since it is less wasteful in computational

resources, and yet satisfies the SBB definition.

Theorem 6.9: SBB InterMAC is N-DOS-sbbCFA secure. Let IM∗ = (K, E ,D)

be the SBB InterMAC scheme from Construction 6.3, composed from a symmetric

encryption scheme SE = (Ke, E ,D) with stateless decryption and message authenti-

cation code MA = (Km, T ,V). Let its segment size be N . Then for any N -DOS-

sbbCFA adversary Ados against IM∗ whose encryption queries total at most µe bits,

there exist adversaries Auf and Aprf such that:

AdvN-dos-sbbcfa
IM∗ (Ados) ≤ Advuf-cma

MA (Auf) + Advprf
T (Aprf) +

(
µ2
e

`2m · 2`tag

)
, (6.19)

where Auf and Aprf consume similar resources to Ados.

Proof. Consider the experiment ExpN-dos-sbbcfa
IM∗ (Ados) . Let F and C be as in Fig-

ure 6.11, and let u be the largest non-negative integer such that there exists a c ∈ C

satisfying F [1, uN] � c = F [1, uN]. Let E represent the event that |F | ≥ (u + 1)N

and Dec(·) did not return any output after receiving the first ((u + 1)N) bits. For

the case of InterMAC, if the adversary wins the experiment, then E must have oc-

curred. Furthermore, let Q represent the event that for any two ciphertexts c and c′

returned by the encryption oracle before E has occurred, there exist positive integers

168

6.6 Constructions

x and y, where x ≤ y, such that c[xN − `tag + 1, xN] = c′[yN − `tag + 1, yN] but

c[1, xN] 6= c′[1, yN] , or c[xN − `tag + 1, xN] = 0`tag . Thus Q represents the event

that either two tags collide or a tag value of all zeros occurs. We then have that:

Pr
[

ExpN-dos-sbbcfa
IM∗ (Ados)) = 1

]
= Pr [E] = Pr [E ∧Q] + Pr

[
E ∧Q

]
,

≤ Pr [Q] + Pr
[
E | Q

]
. (6.20)

We now bound the probability of event Q occurring. Towards this goal we construct

from Ados a PRF adversary Aprf against T . It starts by running Ke to get an en-

cryption key and initialise the states. It then runs Ados and uses the encryption

key together with its oracle to simulate Ados’s encryption oracle (as per Construc-

tion 6.3). In addition it maintains a list of all the ciphertexts it returns, together

with their corresponding messages. Note that by assumption event E has not oc-

curred yet, thus Aprf is able to simulate Ados’s decryption oracle by using this list.

Therefore, when Aprf’s oracle is instantiated with T it provides Ados with a perfect

simulation of its environment. Aprf runs until Ados halts or E occurs, at which point

it checks whether Q has occurred. If so it outputs 1 otherwise it outputs 0. Aprf can

check for Q as it proceeds by maintaining a list of the strings which it queried to

its oracle, indexed by the returned tag values, and check for collisions or tag values

of 0`tag while it populates the list. Consider now the case where Aprf’s oracle is a

random function. The probability of a collision in the tags can be bounded using

a standard birthday bound, while the probability of a tag value of 0`tag is given by

the number of queries divided by 2`tag . Applying the union bound on these two

probabilities, we have that:

Pr
[
f ←$ Func(`c + `tag, `tag) : Af(·)

prf = 1
]
≤
(

µ2
e

`2m · 2`tag+1

)
+

(
µe

`m · 2`tag

)
.

Rounding the above bound, and applying it to Aprf’s advantage formula, yields:

Pr [Q] ≤ Advprf
T (Aprf) +

(
µ2
e

`2m · 2`tag

)
. (6.21)

We now bound the second term of inequality (6.20), by constructing a UF-CMA

adversary Auf against MA from Ados. Adversary Auf proceeds similarly to Aprf.

It runs Ke and uses this key together with its tagging oracle to simulate Ados’s

encryption oracle. It also maintains a list of all the ciphertexts it returns to-

gether with their corresponding messages, and uses this to simulate Ados’s de-

cryption oracle. It then keeps on simulating Ados’s environment until it halts or

169

6.6 Constructions

|F | ≥ (u + 1)N . If |F | ≥ (u + 1)N happens with u > 0, it submits the pair

(F [uN − `tag + 1, uN + `c], F [uN + `c + 1, (u+ 1)N]) to its verification oracle, and

halts. Alternatively, if |F | ≥ (u + 1)N occurs with u = 0, it submits the pair

(0`tag ‖ F [1, `c], F [`c + 1, N]) instead. Note that until it occurs that |F | ≥ (u+ 1)N ,

Auf’s simulation of Ados’s environment is perfect. Furthermore, if Q did not occur,

it follows that the first component of the submitted pair was not previously queried

to the tagging oracle. Thus assuming Q did not occur, whenever E occurs, Auf’s

submitted pair constitutes a valid forgery. Therefore:

Pr
[
E | Q

]
≤ Advuf-cma

MA (Auf) . (6.22)

Combining equations (6.20),(6.21) and (6.22), yields (6.19), as desired.

A slightly different analysis could be used to achieve a possibly better bound for

Theorem 6.9. In particular when bounding event Q, we could have considered the

probability that both the tag and ciphertext values collide. This would lower the

birthday bound term, at the expense of introducing an extra term of the form

Advind$-cpa
SE (A) . If the birthday bound is the dominant term, such an approach

would yield a tighter bound. However we opted for a simpler proof of security.

Theorem 6.10: SBB InterMAC is IND-sbbCFA secure. Let IM∗ = (K, E ,D)

be the SBB InterMAC scheme from Construction 6.3, composed from a symmetric

encryption scheme SE = (Ke, E ,D) with stateless decryption and message authenti-

cation codeMA = (Km, T ,V). Let its segment size be N . Then for any IND-sbbCFA

adversary Asbbcfa against IM∗ whose encryption queries total at most µe bits, there

exist adversaries Acpa, Aprf and Auf, such that:

Advind-sbbcfa
IM∗ (Asbbcfa) ≤ Advind-cpa

SE (Acpa) + 2 ·Advprf
T (Aprf)

+ 2 ·Advuf-cma
MA (Auf) +

µ2
e

`2m · 2`tag−1
, (6.23)

where all four adversaries consume similar resources to Asbbcfa.

Proof. The proof of Theorem 6.10 follows the same lines as its stateful analogue. For

the first part of the proof we will make use of the auxiliary experiment ExpAb
IM of

170

6.6 Constructions

ExpAb
SE(A)

(K,σ, ε)← K
i← 0, j ← 1
fail← 0, p← 1
C← (), F ← ε

b′ ← ALoR(·),Dec(·)

return b′

LoR((m0,m1))

if |m0| 6= |m1| then return
(c, σ)← EK(mb, σ)
i← i+ 1, Ci ← c
return c

Dec(f)

m← ε, F ← F ‖ f
while |F | − jN ≥ 0

if fail = 1 then m← m ‖⊥
else

match← 0
for all c ∈ C

if F [p, jN] � c = F [p, jN]
then match← 1

if F [p, jN] = c
then p← jN + 1

if match = 0 then
m← m ‖⊥, fail← 1

j ← j + 1
F ← F [p, |F |], p← 1, j ← b|F |/Nc
return m

Figure 6.18: The auxiliary experiment used to prove Theorem 6.10.

Figure 6.18. This is essentially the Expind-sbbcfa-b
IM∗ experiment, with the difference

that once the decryption oracle detects a ciphertext which is not a replay of an-

other ciphertext output by the encryption oracle, it then returns ⊥ at every N -bit

boundary of ciphertext that it receives. Now let F and C be as in Figure 6.7, and

let u be the largest non-negative integer such that there exists a c ∈ C satisfying

F [1, uN] � c = F [1, uN]. Let E represent the event that in the IND-sbbCFA experi-

ment |F | ≥ (u+1)N and Dec(·) did not return ⊥ after receiving the first ((u+1)N)

bits. Let W denote the event Expind-sbbcfa-b
IM∗ (Asbbcfa) = b and let WA denote the

event ExpAd
IM∗(Asbbcfa) = d, where bits b and d are picked uniformly at random.

We then have that:

Pr [W]− Pr
[
WA

]
= Pr [W ∧ E] + Pr

[
W ∧ E

]
− Pr

[
WA

]
.

Due to the details of the InterMAC construction, the two experiments are identical
if E does not occur. Bounding Pr

[
E
]
, cancelling equal terms, and then bounding

Pr [W ∧ E] yields:

Pr [W]− Pr
[
WA

]
≤ Pr [W ∧ E] + Pr

[
W | E

]
− Pr

[
WA

]
≤ Pr [W ∧ E] ≤ Pr [E] . (6.24)

Using a reduction similar to that in the proof of Theorem 6.9, it follows that there

171

6.7 Summary

exist adversaries Auf and Aprf such that:

Pr [E] ≤ Advuf-cma
MA (Auf) + Advprf

T (Aprf) +

(
µ2
e

`2m · 2`tag

)
. (6.25)

Combining equations (6.24) and (6.25), and manipulating terms, yields:

Pr [W] ≤ Pr
[
WA

]
+ Advuf-cma

MA (Auf) + Advprf
T (Aprf) +

(
µ2
e

`2m · 2`tag

)
.

Multiplying both sides by two and subtracting one:

Advind-sbbcfa
IM∗ (Asbbcfa) ≤

(
2 · Pr

[
WA

]
− 1
)

+ 2 ·Advuf-cma
MA (Auf) .

+ 2 ·Advprf
T (Aprf) +

(
µ2
e

`2m · 2`tag−1

)
(6.26)

Now from any adversary Asbbcfa, we can construct an IND-CPA adversary Acpa

against SE as follows. Adversary Acpa runs Km to obtain a key for the MAC and

then runs Asbbcfa . It simulates its encryption oracle in accordance with the Inter-

MAC scheme, except that it uses its own oracle to compute encryptions under SE .

In addition it maintains a list of all ciphertexts that it returns. Decryption queries

are handled by simulating the Dec(·) oracle of Figure 6.18. Finally Acpa outputs

whatever Asbbcfa outputs. Note that Acpa provides Asbbcfa with a perfect simulation

of the auxiliary experiment. It then follows that:

Pr
[
WA

]
= Pr

[
d←$ {0, 1} : Expind-cpa-d

SE (Acpa) = d
]
. (6.27)

Combining equations (6.26) and (6.27) yields (6.23), as desired.

6.7 Summary

The SSH attack of [1] and the IPsec attacks of [30] serve to show that, contrary

to common belief, ciphertext fragmentation cannot always be abstracted out from

security models. In this chapter, we have initiated the formal study of symmetric

encryption in the presence of ciphertext fragmentation. In many practical settings,

such as that of secure protocols operating over TCP/IP, the underlying channel is the

172

6.7 Summary

one that is implicit in our models. That is, the channel that allows adversarially-

controlled fragmentation, but which preserves the order of the fragments in the

absence of an adversary. In addition to making correctness, confidentiality, and

boundary hiding more challenging, ciphertext fragmentation introduces new secu-

rity concerns such as the DoS attacks which we described. Thus, in addition to

narrowing the gap between theory and practice, we find that the study of cipher-

text fragmentation to be of interest in its own right. We now conclude with a brief

comparison of our constructions and the SSH variants. This is shown in Table 6.1,

which lists the security notions that are met by each construction. The last col-

umn indicates which schemes are n-DOS-sfCFA or n-DOS-sbbCFA secure for a value

of n strictly smaller than the maximum message length supported by the scheme.

We reiterate that stateful InterMAC is the only scheme to achieve all four security

notions simultaneously. As explained in Section 6.4.2 we do not expect the SBB

variant of InterMAC to be BH-sbbCFA secure. However it is BH-CPA secure if the

underlying scheme is IND$-CPA secure and the underlying MAC is pseudorandom.

Although we did not prove this explicitly it follows easily by first showing that IM∗

is IND$-CPA secure and then applying Theorem 6.2.

IND-sfCFA BH-CPA BH-sfCFA n-DOS-sfCFA
n < max

m∈M
(|m|)

SSH-CBC 8 4 8 8

SSH-CTR 4 4 8 8

IDP 4 4 8 8

IM 4 4 4 4

IND-sbbCFA BH-CPA BH-sbbCFA n-DOS-sbbCFA
n < max

m∈M
(|m|)

IM∗ 4 4 8 4

Table 6.1: Security comparison of encryption schemes supporting fragmentation.

173

Bibliography

[1] Martin R. Albrecht, Kenneth G. Paterson, and Gaven J. Watson. Plaintext

recovery attacks against SSH. In IEEE Symposium on Security and Privacy,

pages 16–26, 2009.

[2] Nadhem J. AlFardan and Kenneth G. Paterson. Plaintext-recovery attacks

against datagram TLS. In Network and Distributed System Security Sympo-

sium (NDSS 2012), 2012.

[3] Nadhem J. AlFardan and Kenneth G. Paterson. Lucky thirteen: Breaking

the TLS and DTLS record protocols. In IEEE Symposium on Security and

Privacy, pages 526–540, 2013.

[4] R. Atkinson. IP encapsulating security payload (ESP). RFC 1827 (Proposed

Standard), August 1995. Obsoleted by RFC 2406.

[5] Gregory V. Bard. A challenging but feasible blockwise-adaptive chosen-

plaintext attack on SSL. In SECRYPT, pages 99–109, 2006.

[6] Gregory V. Bard. Blockwise-adaptive chosen-plaintext attack and online

modes of encryption. In IMA Int. Conf., pages 129–151, 2007.

[7] Aurélie Bauer, Jean-Sébastien Coron, David Naccache, Mehdi Tibouchi,

and Damien Vergnaud. On the broadcast and validity-checking security of

PKCS#1 v1.5 encryption. In ACNS, pages 1–18, 2010.

[8] M. Bellare, T. Kohno, and C. Namprempre. The secure shell (SSH) transport

layer encryption modes. RFC 4344 (Proposed Standard), January 2006.

[9] Mihir Bellare. Practice-oriented provable security. In Lectures on Data Secu-

rity, pages 1–15, 1998.

174

BIBLIOGRAPHY

[10] Mihir Bellare. New proofs for NMAC and HMAC: Security without collision-

resistance. In CRYPTO, pages 602–619, 2006.

[11] Mihir Bellare, Alexandra Boldyreva, Lars R. Knudsen, and Chanathip Nam-

prempre. Online ciphers and the Hash-CBC construction. In CRYPTO, pages

292–309, 2001.

[12] Mihir Bellare, Anand Desai, E. Jokipii, and Phillip Rogaway. A concrete

security treatment of symmetric encryption. In FOCS, pages 394–403, 1997.

[13] Mihir Bellare, Oded Goldreich, and Anton Mityagin. The power of verifica-

tion queries in message authentication and authenticated encryption. IACR

Cryptology ePrint Archive, 2004:309, 2004.

[14] Mihir Bellare, Roch Guérin, and Phillip Rogaway. XOR MACs: New methods

for message authentication using finite pseudorandom functions. In CRYPTO,

pages 15–28, 1995.

[15] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of cipher block

chaining. In CRYPTO, pages 341–358, 1994.

[16] Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre. Breaking and

provably repairing the SSH authenticated encryption scheme: A case study

of the encode-then-encrypt-and-mac paradigm. ACM Trans. Inf. Syst. Secur.,

7(2):206–241, 2004.

[17] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Re-

lations among notions and analysis of the generic composition paradigm. In

ASIACRYPT, pages 531–545, 2000.

[18] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution.

In CRYPTO, pages 232–249, 1993.

[19] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm

for designing efficient protocols. In ACM Conference on Computer and Com-

munications Security, pages 62–73, 1993.

[20] Steven M. Bellovin. Problem areas for the IP security protocols. In in Pro-

ceedings of the Sixth Usenix Unix Security Symposium, pages 205–214, 1996.

175

BIBLIOGRAPHY

[21] Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based on

the RSA encryption standard PKCS #1. In CRYPTO, pages 1–12, 1998.

[22] Alexandra Boldyreva, Jean Paul Degabriele, Kenneth G. Paterson, and Mar-

tijn Stam. Security of symmetric encryption in the presence of ciphertext

fragmentation. In EUROCRYPT, pages 682–699, 2012.

[23] Alexandra Boldyreva, Jean Paul Degabriele, Kenneth G. Paterson, and Mar-

tijn Stam. On symmetric encryption with distinguishable decryption failures.

In FSE, 2013.

[24] Alexandra Boldyreva and Nut Taesombut. Online encryption schemes: New

security notions and constructions. In CT-RSA, pages 1–14, 2004.

[25] Nikita Borisov, Ian Goldberg, and David Wagner. Intercepting mobile com-

munications: the insecurity of 802.11. In MOBICOM, pages 180–189, 2001.

[26] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle method-

ology, revisited. J. ACM, 51(4):557–594, 2004.

[27] Brice Canvel, Alain P. Hiltgen, Serge Vaudenay, and Martin Vuagnoux. Pass-

word interception in a SSL/TLS channel. In CRYPTO, pages 583–599, 2003.

[28] Douglas Comer, editor. Internetworking with TCP/IP - Principles, Protocols,

and Architectures, Fourth Edition. Prentice-Hall, 2000.

[29] Jean Paul Degabriele and Kenneth G. Paterson. Attacking the IPsec stan-

dards in encryption-only configurations. In IEEE Symposium on Security and

Privacy, pages 335–349, 2007.

[30] Jean Paul Degabriele and Kenneth G. Paterson. On the (in)security of IPsec

in MAC-then-encrypt configurations. In ACM Conference on Computer and

Communications Security, pages 493–504, 2010.

[31] Jean Paul Degabriele, Kenneth G. Paterson, and Gaven J. Watson. Provable

security in the real world. IEEE Security & Privacy, 9(3):33–41, 2011.

[32] T. Dierks and C. Allen. The TLS Protocol Version 1.0. RFC 2246 (Proposed

Standard), January 1999. Obsoleted by RFC 4346, updated by RFCs 3546,

5746, 6176.

176

BIBLIOGRAPHY

[33] T. Dierks and E. Rescorla. The transport layer security (TLS) protocol version

1.1. RFC 4346 (Proposed Standard), April 2006. Obsoleted by RFC 5246,

updated by RFCs 4366, 4680, 4681, 5746, 6176.

[34] T. Dierks and E. Rescorla. The transport layer security (TLS) protocol version

1.2. RFC 5246 (Proposed Standard), August 2008. Updated by RFCs 5746,

5878, 6176.

[35] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE

Transactions on Information Theory, 22(6):644–654, 1976.

[36] Yevgeniy Dodis, Eike Kiltz, Krzysztof Pietrzak, and Daniel Wichs. Message

authentication, revisited. In EUROCRYPT, pages 355–374, 2012.

[37] Thai Duong and Juliano Rizzo. Cryptography in the web: The case of cryp-

tographic design flaws in ASP.NET. In IEEE Symposium on Security and

Privacy, pages 481–489, 2011.

[38] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton.

Peek-a-boo, i still see you: Why efficient traffic analysis countermeasures fail.

In IEEE Symposium on Security and Privacy, pages 332–346, 2012.

[39] Niels Ferguson and Bruce Schneier. A cryptographic evaluation of IPsec. Coun-

terpane Internet Security, Inc, 3031, 2000.

[40] Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno. Cryptography Engi-

neering - Design Principles and Practical Applications. Wiley, 2010.

[41] Pierre-Alain Fouque, Antoine Joux, Gwenaëlle Martinet, and Frédéric Valette.

Authenticated on-line encryption. In Selected Areas in Cryptography, pages

145–159, 2003.

[42] Pierre-Alain Fouque, Antoine Joux, and Guillaume Poupard. Blockwise adver-

sarial model for on-line ciphers and symmetric encryption schemes. In Selected

Areas in Cryptography, pages 212–226, 2004.

[43] Pierre-Alain Fouque, Gwenaëlle Martinet, and Guillaume Poupard. Practical

symmetric on-line encryption. In FSE, pages 362–375, 2003.

[44] S. Frankel, R. Glenn, and S. Kelly. The AES-CBC cipher algorithm and its

use with IPsec. RFC 3602 (Proposed Standard), September 2003.

177

BIBLIOGRAPHY

[45] S. Frankel and H. Herbert. The AES-XCBC-MAC-96 algorithm and its use

with IPsec. RFC 3566 (Proposed Standard), September 2003.

[46] R. Glenn and S. Kent. The NULL encryption algorithm and its use with IPsec.

RFC 2410 (Proposed Standard), November 1998.

[47] Oded Goldreich. On post-modern cryptography. IACR Cryptology ePrint

Archive, 2006:461, 2006.

[48] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random

functions (extended abstract). In FOCS, pages 464–479, 1984.

[49] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the cryptographic

applications of random functions. In CRYPTO, pages 276–288, 1984.

[50] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play

mental poker keeping secret all partial information. In STOC, pages 365–377,

1982.

[51] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature

scheme secure against adaptive chosen-message attacks. SIAM J. Comput.,

17(2):281–308, 1988.

[52] Chris Hall, Ian Goldberg, and Bruce Schneier. Reaction attacks against several

public-key cryptosystems. In ICICS, pages 2–12, 1999.

[53] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby.

A pseudorandom generator from any one-way function. SIAM J. Comput.,

28(4):1364–1396, 1999.

[54] R. Housley. Using advanced encryption standard (AES) counter mode with

IPsec encapsulating security payload (ESP). RFC 3686 (Proposed Standard),

January 2004.

[55] R. Housley. Using advanced encryption standard (AES) CCM mode with

IPsec encapsulating security payload (ESP). RFC 4309 (Proposed Standard),

December 2005.

[56] Russell Impagliazzo and Michael Luby. One-way functions are essential for

complexity based cryptography (extended abstract). In FOCS, pages 230–

235, 1989.

178

BIBLIOGRAPHY

[57] Tibor Jager and Juraj Somorovsky. How to break XML encryption. In ACM

Conference on Computer and Communications Security, pages 413–422, 2011.

[58] Antoine Joux, Gwenaëlle Martinet, and Frédéric Valette. Blockwise-adaptive

attackers: Revisiting the (in)security of some provably secure encryption mod-

els: CBC, GEM, IACBC. In CRYPTO, pages 17–30, 2002.

[59] Charanjit S. Jutla. Encryption modes with almost free message integrity. In

EUROCRYPT, pages 529–544, 2001.

[60] C. Kaufman. Internet Key Exchange (IKEv2) Protocol. RFC 4306 (Proposed

Standard), December 2005. Obsoleted by RFC 5996, updated by RFC 5282.

[61] S. Kent. IP authentication header. RFC 4302 (Proposed Standard), December

2005.

[62] S. Kent. IP encapsulating security payload (ESP). RFC 4303 (Proposed

Standard), December 2005.

[63] S. Kent and R. Atkinson. IP encapsulating security payload (ESP). RFC 2406

(Proposed Standard), November 1998. Obsoleted by RFCs 4303, 4305.

[64] S. Kent and R. Atkinson. Security Architecture for the Internet Protocol. RFC

2401 (Proposed Standard), November 1998. Obsoleted by RFC 4301, updated

by RFC 3168.

[65] S. Kent and K. Seo. Security Architecture for the Internet Protocol. RFC

4301 (Proposed Standard), December 2005. Updated by RFC 6040.

[66] A. Keromytis and N. Provos. The use of HMAC-RIPEMD-160-96 within ESP

and AH. RFC 2857 (Proposed Standard), June 2000.

[67] Neal Koblitz and Alfred Menezes. Another look at ”provable security”. J.

Cryptology, 20(1):3–37, 2007.

[68] Neal Koblitz and Alfred Menezes. Another look at security definitions. IACR

Cryptology ePrint Archive, 2011:343, 2011.

[69] Hugo Krawczyk. The order of encryption and authentication for protecting

communications (or: How secure is ssl?). In CRYPTO, pages 310–331, 2001.

179

BIBLIOGRAPHY

[70] C. Madson and R. Glenn. The use of HMAC-SHA-1-96 within ESP and AH.

RFC 2404 (Proposed Standard), November 1998.

[71] James Manger. A chosen ciphertext attack on RSA optimal asymmetric en-

cryption padding (OAEP) as standardized in PKCS #1 v2.0. In CRYPTO,

pages 230–238, 2001.

[72] Ueli Maurer. Constructive cryptography - a new paradigm for security defini-

tions and proofs. In TOSCA, pages 33–56, 2011.

[73] Ueli Maurer and Björn Tackmann. On the soundness of authenticate-then-

encrypt: formalizing the malleability of symmetric encryption. In ACM Con-

ference on Computer and Communications Security, pages 505–515, 2010.

[74] D. McGrew and J. Viega. The use of galois message authentication code

(GMAC) in IPsec ESP and AH. RFC 4543 (Proposed Standard), May 2006.

[75] David A. McGrew and John Viega. The security and performance of the

galois/counter mode (GCM) of operation. In INDOCRYPT, pages 343–355,

2004.

[76] C. Neuman, T. Yu, S. Hartman, and K. Raeburn. The Kerberos Network

Authentication Service (V5). RFC 4120 (Proposed Standard), July 2005. Up-

dated by RFCs 4537, 5021, 5896, 6111, 6112, 6113, 6649, 6806.

[77] Kenneth G. Paterson. A cryptographic tour of the IPsec standards. IACR

Cryptology ePrint Archive, 2006:97, 2006.

[78] Kenneth G. Paterson, Thomas Ristenpart, and Thomas Shrimpton. Tag size

does matter: Attacks and proofs for the TLS record protocol. In ASIACRYPT,

pages 372–389, 2011.

[79] Kenneth G. Paterson and Gaven J. Watson. Plaintext-dependent decryption:

A formal security treatment of SSH-CTR. In EUROCRYPT, pages 345–361,

2010.

[80] Kenneth G. Paterson and Gaven J. Watson. Authenticated-encryption with

padding: A formal security treatment. In Cryptography and Security, pages

83–107, 2012.

180

BIBLIOGRAPHY

[81] Kenneth G. Paterson and Arnold K. L. Yau. Cryptography in theory and

practice: The case of encryption in IPsec. In EUROCRYPT, pages 12–29,

2006.

[82] R. Pereira and R. Adams. The ESP CBC-mode cipher algorithms. RFC 2451

(Proposed Standard), November 1998.

[83] E. Rescorla and N. Modadugu. Datagram transport layer security version 1.2.

RFC 6347 (Proposed Standard), January 2012.

[84] Phillip Rogaway. Problems with proposed IP cryptography. Unpublished

manuscript, April 1995.

[85] Phillip Rogaway. Nonce-based symmetric encryption. In FSE, pages 348–359,

2004.

[86] Phillip Rogaway. On the role of definitions in and beyond cryptography. In

ASIAN, pages 13–32, 2004.

[87] Phillip Rogaway. Practice-oriented provable security and the social construc-

tion of cryptography. Unpublished essay based on an invited talk at Eurocrypt,

2009.

[88] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. OCB: a block-

cipher mode of operation for efficient authenticated encryption. In ACM Con-

ference on Computer and Communications Security, pages 196–205, 2001.

[89] Claude E Shannon. Communication theory of secrecy systems. Bell system

technical journal, 28(4):656–715, 1949.

[90] Tom Shrimpton. A characterization of authenticated-encryption as a form of

chosen-ciphertext security. IACR Cryptology ePrint Archive, 2004:272, 2004.

[91] JH. Song, R. Poovendran, J. Lee, and T. Iwata. The AES-CMAC algorithm.

RFC 4493 (Informational), June 2006.

[92] William Stallings. Network Security Essentials - Applications and Standards

(4. ed., internat. ed.). Pearson Education, 2010.

[93] Serge Vaudenay. Security flaws induced by CBC padding - applications to

SSL, IPSEC, WTLS ... In EUROCRYPT, pages 534–546, 2002.

181

BIBLIOGRAPHY

[94] J. Viega and D. McGrew. The use of galois/counter mode (GCM) in IPsec

encapsulating security payload (ESP). RFC 4106 (Proposed Standard), June

2005.

[95] David Wagner and Bruce Schneier. Analysis of the SSL 3.0 protocol. In The

Second USENIX Workshop on Electronic Commerce Proceedings, pages 29–40,

1996.

[96] Andrew M. White, Austin R. Matthews, Kevin Z. Snow, and Fabian Monrose.

Phonotactic reconstruction of encrypted VoIP conversations: Hookt on fon-iks.

In IEEE Symposium on Security and Privacy, pages 3–18, 2011.

[97] D. Whiting, R. Housley, and N. Ferguson. Counter with CBC-MAC (CCM).

RFC 3610 (Informational), September 2003.

[98] T. Ylonen and C. Lonvick. The secure shell (SSH) authentication protocol.

RFC 4252 (Proposed Standard), January 2006.

[99] T. Ylonen and C. Lonvick. The secure shell (SSH) connection protocol. RFC

4254 (Proposed Standard), January 2006.

[100] T. Ylonen and C. Lonvick. The secure shell (SSH) protocol architecture. RFC

4251 (Proposed Standard), January 2006.

[101] T. Ylonen and C. Lonvick. The secure shell (SSH) transport layer protocol.

RFC 4253 (Proposed Standard), January 2006. Updated by RFC 6668.

182

