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ABSTRACT
Secure network protocols like TLS, QUIC, SSH and IPsec allow

for additional padding to be used during encryption in order to

hide message lengths. While it is impossible to conceal message

lengths completely, without drastically degrading efficiency, such

mechanisms aim at causing as much frustration as possible to the

prospective attacker. However, none of the protocol specifications

provide any guidance on how to select the length of this padding.

Several works have highlighted how the leakage of message lengths

can be exploited in attacks, but the converse problem of how to best

defend against such attacks remains relatively understudied. We

make this the focus of our work and present a formal treatment of

length hiding security in a general setting. Prior work by Tezcan and

Vaudenay suggested that sampling the padding length uniformly

at random already achieves the best possible security. However we

show that this is only true in the limited setting where only a single

ciphertext is available to the adversary. If multiple ciphertexts are

available to the adversary, then sampling the padding length accord-

ing to a Gaussian distribution yields quantifiably better security

for the same overhead. In fact, in this setting, uniformly random

padding turns out to be among the worst possible choices. We con-

firm experimentally the superior performance of Gaussian padding

over uniform padding in the context of the CRIME/BREACH attack.
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1 INTRODUCTION
Conventional wisdom within the cryptographic community has

it that encryption cannot conceal message lengths. Information-

theoretic formulations of this statement can be found in the work
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of Chor and Kushilevitz [12], and that of Phan and Vaudenay [37].

It is also reflected in almost all security definitions for encryption,

which require that message pairs queried to a left-or-right oracle

always be of the same length, or that the encryption scheme have a

fixed expansion, i.e., it produces ciphertexts that are a fixed number

of bits longer than the corresponding messages. In effect, hiding

message lengths is considered to be a lost cause within the theo-

retical community and typically kept out of the picture, i.e., the

security model.

Yet the leakage of message sizes is very problematic in practice

and is in fact one of the common avenues for breaking real-world

systems [15, 20, 21, 25, 26, 29, 35, 38, 42, 45, 51]. Accordingly, se-

cure network protocols like TLS [48], SSH [52], QUIC [49], and

IPsec [27] include length-padding mechanisms in order to hide

message lengths and mitigate against this type of attacks. Clearly,

any practical length-padding scheme cannot provide an absolute

guarantee of protection since it cannot reduce an adversary’s suc-

cess probability to a negligible value. Instead, the goal here is to

maximise the adversary’s frustration by slowing her down, causing

her to consume as many resources as possible, and limiting the

damage that she may cause. Moreover, length-padding could be

one of a set of countermeasures that, in combination, succeed in

thwarting an attack.

Note that a similar situation arises in the realm of Differential

Privacy [16], where in order to retain an acceptable level of accuracy

in the statistical data, we have to content ourselves with limiting

the adversary’s advantage only to a moderately small value rather

than a negligible one [17]. Nevertheless, Differential Privacy has

proven to be an effective and pragmatic solution for protecting

the privacy of individuals within a dataset. Accordingly, we think

there is scope in studying length padding and how to maximise its

efficacy. Length padding incurs a costly overhead in bandwidth, and

it is thus essential to obtain the best possible security for a given

amount of overhead and to be able to quantify its benefits. However,

while the above protocol specifications ensure that implementations

can handle length padding correctly, they provide no guidance on

how to determine its length. Indeed an excerpt from the TLS 1.3

specification (RFC 8446) reads as follows:

"Selecting a padding policy that suggests when and how much to pad
is a complex topic and is beyond the scope of this specification. If
the application-layer protocol on top of TLS has its own padding, it
may be preferable to pad Application Data TLS records within the
application layer. Padding for encrypted Handshake or Alert records
must still be handled at the TLS layer, though. Later documents may
define padding selection algorithms or define a padding policy request
mechanism through TLS extensions or some other means."

Consequently, when random-sized padding is used, the favoured

approach is typically the most direct one, i.e., padding of uniformly

distributed length, which we refer to as uniform random padding.
Guidance on length padding is also sparse within the academic

body of literature. To the best of our knowledge, the only formal
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security treatments of length padding are that of Paterson, Risten-

part and Shrimpton [36], and that of Tezcan and Vaudenay [47],

henceforth referred to as PRS11 and TV11, respectively. However,

while they consider similar settings, they ultimately focus on fairly

different aspects of length padding. In particular, PRS11 studies

how length padding may be circumvented at the cryptographic

level due to information leaking from the decryption algorithm.

Examples of such attacks were described in [36] in the context of

TLS, and earlier in [15] for the case of IPsec. On the other hand,

TV11 focuses on quantifying the security provided by uniform ran-

dom padding. Their main results show that the associated security

bound degrades linearly with the average padding length, but more

interestingly, they show that with respect to their security model,

uniform random padding is nearly optimal.

1.1 Our Contribution
In this work, we take a new look at length-hiding security. We build

and improve on prior work to obtain amore comprehensive security

model and then reduce it, under standard assumptions about the en-

cryption scheme, to a simplified and purely information-theoretic

model for evaluating the efficacy of a padding distribution. We

then derive an inequality expressing the adversary’s multisam-

ple advantage as a function of its single-sample advantage and

the number of samples. A key insight surfaced by this relation is

that the single-sample advantage consists of two components that

grow at different rates as the number of samples increases. This

insight leads us to the Laplace and Gaussian distributions as su-

perior alternatives to uniform padding. We further confirm this

experimentally, both with respect to our security model and the

CRIME/BREACH attack. Specifically, in the latter case, we show

that at an average overhead of 200 bytes per message switching

from uniform to Gaussian padding raises the required number of

samples/messages from 76, 883 to 7, 680, 000 while simultaneously

lowering the success probability from 1.0 to 0.0026. We discuss each

of these contributions in more detail below.

Security Definition and Composition. When deciding on the best

way to sample length padding, the analysis of TV11 suggests that

there is not much to ponder about as the simplest solution (uniform

padding) already yields the best performance. However, the security

model in which TV11 derived their result was rather restricted.

Most notably, it only allowed the adversary to observe a single

ciphertext. A well-known technique for weakening the effect of

random padding is to ‘average out’ its effect over multiple queries,

an aspect that is not captured in the security model of TV11.

Motivated by this limitation and the work of PRS11 we propose

a unified security model that combines the best of both. Our secu-

rity definition allows us to evaluate the efficacy of different length

padding schemes under multiple encryptions while at the same time

capturing possibly bad interactions with the cryptographic com-

ponent. Examples of such bad interactions were exposed against

IPsec in [15] and against TLS in [36]. To addresses this, we prove a

composition theorem showing that the common pad-then-encrypt

strategy is sound, provided that the encryption satisfies a mild se-

curity requirement called channel simulatability. In addition, the

composition theorem also serves to reduce our comprehensive

length-hiding security model to a simpler and purely information-

theoretic one that focuses solely on the padding scheme.

Cover Difference andMultisample Distinguisher. We introduce a new

simple statistical measure which we call cover difference. Intuitively
this captures an adversary’s ability to distinguish two distributions

with certainty. In contrast, the more common metric of statistical

distance only measures the probability of an adversary guessing cor-

rectly, even if the adversary may not know which of her guesses are

correct. Then using Pinsker’s inequality, we derive the Multisample

Distinguisher Theorem, which bounds the multisample statistical

distance as a function of the number of samples, the single-sample

cover difference, and the single-sample KL-divergence.

The key insight that we obtain from the Multisample Distin-

guisher Theorem is as follows. For any padding distribution, the

single-sample statistical distance can be decomposed into two dis-

joint components, of which one is the single-sample cover differ-

ence. These two components can then be translated to the 𝑞-sample

setting by multiplying the cover difference by 𝑞 and the remain-

ing component by

√
𝑞. That is, the cover difference component

scales up more rapidly with the number of samples than the other

component. In the particular case of uniform random padding, we

observe that the single-sample statistical distance consists entirely

of cover difference and therefore scales up linearly with the number

of samples—which is the worst possible rate. Thus while uniform

padding is a nearly optimal choice in the single-sample setting, it

quickly loses its edge already when a small number of samples is

available to the adversary.

Furthermore, the Multisample Distinguisher Theorem comes in

handy when bounding the multisample statistical distance between

two distributions. For instance, while the statistical distance can

often be evaluated numerically for a single sample, evaluating it

over multiple samples becomes quickly intractable as the number

of samples increases. At the same time, it yields a fairly tight bound.

Gaussian Padding. The above analysis indicates that a suitable

padding distribution must strike the right balance between min-

imising its single-sample statistical distance and minimising the

single-sample cover difference. A small statistical distance ensures a

good level of security already in the single sample setting, whereas a

small cover difference ensures that the 𝑞-sample statistical distance

scales up proportionally to

√
𝑞 rather than 𝑞.

We identify two such padding distributions: the discrete Laplace

and Gaussian distributions. We then study the security of these

distributions in more detail through a combination of theoretical

and empirical analysis. The Gaussian distribution emerges as the

preferred choice. We evaluate its security for practical parameters

and show that it offers significantly better performance than the uni-

form distribution in a setting where multiple samples are available

to the adversary. In the appendix, we further compare the efficacy

of these three padding schemes in thwarting the CRIME/BREACH

attack. As we did above, one can compare the success probabilities

and the number of encryptions for the distinct padding schemes

in the context of the CRIME attack. Alternatively, we can consider

the amount of overhead required by each scheme to attain a cer-

tain level of protection. Our results indicate that uniform padding

would require a per-message overhead of roughly 20, 000 bytes to

attain roughly the same level of protection that Gaussian padding



provides with just 200 bytes of overhead. As such, while Gaussian

padding does not hide message lengths in an absolute sense, its

performance benefits over uniform padding are substantial.

1.2 Length Hiding vs Fingerprinting
An adversary may benefit from learning the sizes of messages in

various ways, depending on the setting at hand. Accordingly, we

make a distinction between length-hiding security, the scope of this

work, and fingerprinting security as covered in [18, 19], for instance.

In fingerprinting, the ciphertext length is only one of the features

of the encrypted traffic that enables the adversary to determine

its origin. An adversary can additionally measure the total volume

and the time intervals between consecutive ciphertexts in order to

fingerprint the traffic. Indeed [18] indicates that length padding by

itself is not very effective against website fingerprinting, exactly

for this reason.

Despite this, we believe that length-hiding security still merits

attention for at least two reasons. Firstly, there are other types of

length attacks besides fingerprinting, such as CRIME and BREACH

[20, 42], which are significantly different from fingerprinting. In

particular, the total volume and the timing information are of little

use here. On the other hand, the adversary requires the ability to

choose messages which is typically not needed for website finger-

printing. Secondly, any length-hiding mechanism that we identify

or improve upon could potentially serve as a stepping stone towards

an (improved) aggregate countermeasure against fingerprinting.

Thus, we emphasise that our treatment targets a scenario akin to

CRIME or BREACH and that, by itself, it should not be considered

in the context of fingerprinting.

2 PRELIMINARIES
2.1 Notation
Unless otherwise stated, an algorithm may be randomised. An

adversary is an algorithm. For any adversary A and algorithms

X,Y, . . . we use AX( ·),Y(·),... ⇒ 𝑧 to denote the process of run-

ning A with fresh coins and oracle access to algorithms X,Y, . . .
and returning an output 𝑧. By convention the running time of an

adversary refers to the sum of its actual running time and the size

of its description. We generically refer to the resources of an adver-

sary as any subset of the following quantities: its running time, the

number of queries that it makes to its oracles, and the total length

(in bytes) of its oracle queries.

If S is a set then |S| denotes its size, and 𝑦 ↞ S denotes the

process of selecting an element from S uniformly at random and

assigning it to 𝑦. We use {0, 1}𝑛 to denote the set of all binary

strings of length 𝑛, and {0, 1}∗ denotes the set of all binary strings

of finite length. The empty string is represented by Y. For any two

strings𝑢 and 𝑣 , |𝑢 | denotes the length of𝑢 in bytes and𝑢 ∥𝑣 denotes
their concatenation.

We say that a probability distribution is discrete if its sample

space is finite or countably infinite. For discrete probability distri-

butions𝑀 and 𝑁 over a sample space Ω, we use ⟨𝑀⟩ to denote the

support of𝑀 , and𝑀×𝑁 to denote the distribution of pairs of values

sampled independently from𝑀 and 𝑁 . Similarly, we write𝑀𝑞
to

denote the distribution of 𝑞 independent and identically-distributed

(i.i.d.) samples. Thus for any ®𝑥 = [𝑥1, . . . , 𝑥𝑞] ∈ Ω𝑞 , we have that
𝑀𝑞 ( ®𝑥) = 𝑀 (𝑥1) · · ·𝑀 (𝑥𝑞).

2.2 Difference Measures.
Let𝑀 and 𝑁 be two discrete distributions over a sample space Ω.
The statistical distance between𝑀 and 𝑁 is defined as:

SD(𝑀, 𝑁 ) =
∑︁
𝑥∈Ω

1

2

|𝑀 (𝑥) − 𝑁 (𝑥) | =
∑︁
𝑥∈Ω

max (𝑀 (𝑥) − 𝑁 (𝑥), 0) .

If 𝑁 has full support, i.e. ⟨𝑁 ⟩ = Ω, the Kullback-Leibler (KL) diver-
gence between𝑀 and 𝑁 is defined as:

D(𝑀 ∥𝑁 ) =
∑︁
𝑥∈Ω

𝑀 (𝑥) ln
[
𝑀 (𝑥)
𝑁 (𝑥)

]
.

While statistical distance satisfies the triangle inequality, KL diver-

gence does not. Nevertheless KL divergence is subadditive, i.e.,

D(𝑀 ×𝑀 ∥𝑁 × 𝑁 ) ≤ D(𝑀 ∥𝑁 ) + D(𝑀 ∥𝑁 ) .

The subadditivity of KL divergence is a simple consequence of its

chain rule [39]. In addition statistical distance and KL divergence

are related via the well-known inequality attributed to Pinsker:

Lemma 2.1 (Pinsker’s ineqality [39]).

SD(𝑀, 𝑁 )2 ≤ 1

2

· D(𝑀 ∥𝑁 ) .

Finally, while we will mostly be concerned with discrete distribu-

tions, we will also make use of the KL divergence for continuous

distributions. For real-valued continuous distributions �̄� and 𝑁 ,

where 𝑁 has full support, the KL divergence is defined as:

D(�̄� ∥𝑁 ) =
∫ ∞

−∞
�̄� (𝑡) ln

[
�̄� (𝑡)
𝑁 (𝑡)

]
𝑑𝑡 .

2.3 Symmetric Encryption
For added generality, we adopt the syntax of Subtle AE used in [6].

This allows us to additionally model decryption leakage originating

from distinguishable decryption failures [8] or release of unverified

plaintext [4].

A symmetric encryption scheme SE = (K, E,D) is a triple of algo-
rithms such that:

- The randomised key generation algorithm K takes no input

and returns a secret key 𝐾 of fixed size. We will slightly abuse

notation and use K to also identify the key space associated to

the key generation algorithm.

- The encryption algorithm E : K × {0, 1}∗ → {0, 1}∗, may be

randomised, stateful or both. It takes as input the secret key

𝐾 ∈ K , a plaintext message𝑚 ∈ {0, 1}∗, and returns a ciphertext
in {0, 1}∗. For stateful versions it may update its internal state

when executed.

- The decryption algorithm D : K × {0, 1}∗ → ({⊤,⊥} × {0, 1}∗)
is deterministic and may be stateful. It takes the secret key 𝐾

and a ciphertext 𝑐 ∈ {0, 1}∗, to return a tuple (𝑣,𝑚) such that

𝑣 ∈ {⊤,⊥} indicates the validity of the corresponding ciphertext,

and𝑚 is a binary string representing a message or some leakage.

It may update its state upon execution.



Note that decryption may either return (⊤,𝑚), indicating that the

ciphertext was valid and decrypts to the message𝑚 ∈ {0, 1}∗, or
(⊥,𝑚), indicating that the ciphertext was invalid where𝑚 ∈ {0, 1}∗
may represent an error message, some internal value, or some other

form of leakage. The leakage-free setting is modelled by returning

(⊥, Y) in response to an invalid ciphertext.

We further require that a symmetric encryption scheme sat-

isfy the standard correctness condition stated below. As shorthand,

we write 𝑐1, . . . , 𝑐𝑛 ← E𝐾 (𝑚1, . . . ,𝑚𝑛) to denote the (in-order) se-

quence of encryption operations 𝑐1 ← E𝐾 (𝑚1), 𝑐2 ← E𝐾 (𝑚2), . . . ,
𝑐𝑛 ← E𝐾 (𝑚𝑛). Similarly, (𝑣1,𝑚

′
1
), . . . , (𝑣𝑛,𝑚′𝑛) ← D𝐾 (𝑐1, . . . , 𝑐𝑛)

denotes the analogous sequence of decryption operations.

Definition 2.2 (Correctness). For all keys 𝐾 ∈ K , all 𝑛 ∈ N, and
all message sequences𝑚1, . . . ,𝑚𝑛 , it must hold that if 𝑐1, . . . , 𝑐𝑛 ←
E𝐾 (𝑚1, . . . ,𝑚𝑛) and (𝑣1,𝑚

′
1
), . . . , (𝑣𝑛,𝑚′𝑛) ← D𝐾 (𝑐1, . . . , 𝑐𝑛), then

𝑣𝑖 = ⊤ and𝑚′
𝑖
=𝑚𝑖 for all 1 ≤ 𝑖 ≤ 𝑛.

We only require decryption to recover the honestly generated mes-

sages when ciphertexts are decrypted in the same order as theywere

produced. This slightly weaker correctness requirement allows us

to cater for schemes with a stateful decryption algorithm.

2.4 Channel Simulatability
Various security notions exist for symmetric encryption, but we

will make use of channel simulatability from [14]. In rough terms,

it requires that for a secure scheme, some algorithm S can simulta-

neously simulate access to both encryption and decryption. Then,

intuitively, access to the communication channel does not aid an

adversary in any way since she can simulate it by herself. For

technical reasons [14], the simulator algorithm S is augmented

with a separate wrapper algorithmW that overwrites some of the

simulator’s decryption outputs.

Note that the standard notion of authenticated encryption (with

pseudorandom ciphertexts) already implies channel simulatability.

In fact, channel simulatability is merely a weaker generalisation

thereof which does not mandate integrity, supports multiple errors

and other forms of decryption leakage, and does not require cipher-

texts to be pseudorandom
1
. We will use channel simulatability as a

stepping stone to reach our end goal, rather than make it the end

goal itself. Consequently, our use of channel simulatability as a

preqrequisite only adds generality to our treatment. Below is the

formal definition.

Definition 2.3 (Channel Simulatability). Let SE = (K, E,D) be a
symmetric encryption scheme. For any adversary A and a channel

simulator S we define the corresponding CS advantage as:

AdvcsSE (A,S) = Pr

[
AE𝐾 ( ·),D𝐾 ( ·) ⇒ 1

]
− Pr

[
AS(e, | · |),W[S] (d, ·) ⇒ 1

]
,

where probabilities are taken over 𝐾 ↞ K and the algorithms’

coin tosses. A scheme SE is said to be (𝜖,RS,RA )-CS secure, if

there exists a randomised and possibly stateful simulator S such

that every query of the form S(e, ·) or S(d, ·) requires at most

1
A stronger variant of channel simulatability with integrity is possible [14], but we

will not need this here.

W[S](d, 𝑐 ′)
(𝑣,𝑚′) ← S(d, 𝑐′)
if ∃𝑚 s.t. (𝑚,𝑐′) ∈ T
(𝑣,𝑚′) ← (⊤,𝑚)

return (𝑣,𝑚′)

W[S](d, 𝑐 ′)
(𝑣,𝑚′) ← S(d, 𝑐′)
if ∃𝑚 s.t. (𝑚,𝑐′) ∈ T
(𝑣,𝑚′) ← ( , )

return (𝑣,𝑚′)

Figure 1: Left: The wrapper W used to define channel simu-
latability. Right: A similar wrapperWwhich suppresses out-
put instead of replacing it with transcript values.

RS resources, and for any adversary A, requiring at most RA
resources, its respective advantage AdvcsSE (A,S) is bounded by 𝜖 .

Let us now unpack the above definition. Throughout the adver-

sary’s interaction with its encryption oracle (real or simulated),

a transcript T is maintained of its queries and responses. This is

simply a list of message-ciphertext pairs (𝑚,𝑐), where each entry

corresponds to an encryption query. As for the simulator S, note
that it is a single algorithm with separate interfaces for encryption

and decryption. That is, S(e, |·|) and S(d, ·) share the same state

and randomness. Note that the simulator is only fed the size of the

message in an encryption query. Furthermore, access to simulated

decryption queries is mediated through a wrapper algorithm W
that forwards queries between the adversary and the simulator,

and possibly overwrites the output of the simulator. Namely the

wrapper will detect whether a ciphertext corresponds to a prior

encryption query and replace the output of S with the message in

the transcript. The simulator is unaware of the wrapper’s actions.

The wrapper is needed because if the simulator were to be given

direct access to the transcript the resulting security notion would

no longer guarantee confidentiality [14]. Due to the presence of

W, there is no need to restrict the adversary’s decryption queries

as in other security definitions. A pseudocode description ofW is

displayed in Figure 1. In some proofs we will make use of a second

wrapperW, also shown in Figure 1, which operates similarly but

suppresses output instead of overwriting it.

3 LENGTH HIDING SECURITY
We now introduce our formal security definition for length hid-

ing and show that a symmetric encryption scheme that is channel

simulatable can be safely composed together with an appropri-

ate padding scheme to meet our notion. This simple composition

theorem allows us to reduce length hiding security to a purely

information-theoretic problem, namely that of distinguishing be-

tween two distributions over the integers which we can sample

multiple times.

3.1 Prior Security Definitions
Our Length Hiding security definition builds on two prior security

definitions that were proposed independently in PRS11 and TV11.

An overview of these works is provided in Appendix A where we

discuss their limitations in more detail. Comparing the definitions

from PRS11 and TV11 we see good and bad aspects in both. On the



Game LHCCASE,R
𝑏 ↞ {0, 1}, 𝐾 ↞ K

𝑏′ ↞ ALR,Enc,Dec

return (𝑏 = 𝑏′)

alg. LR(𝑚0,𝑚1)
if R( |𝑚0 |, |𝑚1 |)
𝑐 ← E𝐾 (𝑚𝑏 ), S ←∪ 𝑐

else

𝑐 ←  
return 𝑐

alg. Enc(𝑚)
𝑐 ← E𝐾 (𝑚)
return 𝑐

alg. Dec(𝑐)
if 𝑐 ∈ S

return ( , )
else

(𝑣,𝑚) ← D𝐾 (𝑐)
return (𝑣,𝑚)

Figure 2: The Length Hiding Game.

one hand the PRS11 definition captures the fact that length informa-

tion might leak at the cryptographic level, say during decryption. In

contrast, the TV11 definition adopts a more simplistic formulation

that does not take this into account which excludes access to the

decryption algorithm and allows only a single encryption query.

However, unlike PRS11, their security definition takes the padding

strategy into account. Our length-hiding security definition takes

the best of both worlds and merges these into a stronger definition.

In addition by parametrising security via a relation that is inde-

pendent of the scheme, we avoid a circularity issue present in the

PRS11 definition, where the degree of length-hiding provided by

the notion is dependent on the scheme.

3.2 A Unified Security Definiton
In view of the limitations in the security models put forth by PRS11

and TV11, we propose a unified security definition. Like PRS11

our definition allows the adversary to make multiple encryption

and decryption queries. However, as in TV11, the ciphertext length

is determined by the scheme rather than the adversary, which

allows us to evaluate the length hiding mechanism, i.e., the padding

strategy. Unlike PRS11, however, our notion does not guarantee

integrity as we view length hiding being akin to confidentiality but

separate from integrity as a goal. Below is the formal definition.

Definition 3.1 (Length Hiding Security). Let R be some fixed rela-

tion over pairs of non-negative integers. Then for any symmetric

encryption scheme SE = (K, E,D) and any adversary A we de-

fine the corresponding LH-CCA advantage as:

Advlh-ccaSE,R (A) = 2 Pr[LHCCAASE,R ⇒ true] − 1 .

For generality our security notion is parametrised by a relation

R over message-length pairs. This replaces the usual condition that

both messages be of the same length and allows us to tune our

security definition to different ‘flavours’ of length hiding – see the

next paragraph on deterministic padding for examples. However,

our focus will be on the relation RΔ where RΔ ( |𝑚0 |, |𝑚1 |) = true if
and only if 0 ≤ |𝑚1 | − |𝑚0 | ≤ Δ𝑚𝑎𝑥 , for some positive integer Δ𝑚𝑎𝑥 .
The adversary is given access to a challenge oracle as well as a plain

encryption oracle. This allows us to separate challenge queries from

encryption queries in the security bound. Note that both oracles

make use of the same instance of the encryption algorithm, i.e., the

two oracles share the state of E𝐾 . Note also that the lengths of the

messages can vary from query to query as long as the relation RΔ
is satisfied.

3.3 Security Model and Deterministic Padding
A number of deterministic padding schemes have been suggested in

the literature – see [18] for some examples. One such example is the

padding by rounding technique, typically employed in CBC encryp-

tion, in which the padding length is selected so as to extended the

message to fill the nearest block. The padding technique employed

in Tor can also be viewed as an instance of padding by rounding.

Any such deterministic padding scheme that permits more than one

ciphertext length offers no protection in our security model. This

is because in our security model the adversary has control over the

message lengths. Then for any such padding scheme the adversary

can always, even when Δ = 1, choose a pair of messages whose

lengths lie on either side of the threshold value thereby resulting

in two ciphertexts of distinct lengths.

As we already pointed out in Section 1.2 allowing adversarial

control over the message lengths is necessary to capture length-

based attacks such as CRIME and BREACH [20, 42]. Accordingly,

in this paper we focus on randomised length padding. This does

not imply, however, that deterministic padding may not be bene-

ficial in other settings. In fact, recent work by Gellert, Jager, Lyu,

and Neuschulten [19] argues in favour of deterministic padding

in the context of fingerprinting. Besides the adversarial control

over message lengths, they point to the fact that our security model

focuses on distinguishing between the encryptions of two messages

whereas theirs extends to a setting with more messages. Essentially,

in our security model the adversary is challenged to guess a single

bit of information whereas in theirs there may be more information

for the adversary to learn in order to win. As such, while these

differences effectively weaken the security definition they seem

more appropriate for the fingerprinting scenario. On the other hand,

if the goal is to protect against attacks like CRIME and BREACH

our security definition is a better choice.

Finally, we note that it is also possible to tune our security notion

to be more amenable to deterministic padding by considering a

different relation other than RΔ. Namely, replacing it with a relation

that holds true for any pair of messages whose lengths map to the

same value when rounded to the nearest block. Indeed that security

definition would be analogous to the LHAE definition of PRS11 [36]

but would avoid its circularity issue (see Appendix A.1).

3.4 Reduction to Information-Theoretic Setting
The attacks presented in [15, 36] against TLS and IPsec show that

combining length padding and encryption is not as straightforward

as one might think. In particular the cryptographic component

might leak information about the padding length even if the mes-

sage contents are not leaked. Thus no matter how good the statisti-

cal guarantees of the length padding may be, it is all in vain if the

resulting composition does not resist such attacks. We present a

simple composition theorem showing that appending a message

with padding before encryption is safe if the encryption scheme is



Game DHIDEP,Δ𝑚𝑎𝑥
𝑏 ↞ {0, 1}

𝑏′ ↞ AHide

return (𝑏 = 𝑏′)

alg. Hide(Δ)
if Δ ≤ Δ𝑚𝑎𝑥

𝑧 ↞ P
if 𝑏 = 1 then 𝑧 ← 𝑧 + Δ

else

𝑧 ←  
return 𝑧

Figure 3: The Difference Hiding Game.

channel simulatable. Indeed, looking back at the attacks in [15, 36]

we observe that the schemes employed in TLS 1.2 and IPsec in those

situations were not channel simulatable. Nevertheless, most Au-

thenticated Encryption schemes in use today, such as GCM [30] and

ChaCha-Poly1305 [34], do meet this notion. Another way to view

our composition theorem is that channel simulatability allows us to

reduce LH-CCA security to the statistical properties of the proba-

bility distribution by which the padding length is determined. More

specifically, for a padding distribution P, the statistical properties
which we require are captured by the Difference Hiding notion

described below.

Definition 3.2 (Difference Hiding). LetP be a padding distribution.

Then for any adversary A we define the corresponding D-HIDE
advantage as:

Advd-hideP,Δ𝑚𝑎𝑥 (A) = 2 Pr[DHIDEAP,Δ𝑚𝑎𝑥⇒ true] − 1 .

In the above game the adversary interacts with a Hide oracle.
This oracle takes as input a non-negative integer Δ, smaller or

equal to some maximum value Δ𝑚𝑎𝑥 , it then samples another non-

negative integer 𝑧 from P, and returns either 𝑧 or 𝑧 + Δ with equal

probability. The goal of the adversary is to distinguish between

these two cases.

Note that the D-HIDE security of the padding scheme depends

solely on the sampling algorithm P which determines the length of

the padding. However, a padding scheme requires two additional

algorithms, pad and unpad, satisfying a simple correctness require-

ment. The former is a possibly randomised algorithm taking as

input an integer 𝑧 and returning a padding string of size 𝑧. Then

for any message, whenever such a padding string is appended to

it and fed into unpad the original message will be returned as the

output. We are now ready to state our composition theorem.

alg. E(𝑚)
𝑧 ↞ P
𝑐 ← E𝐾 (𝑚 ∥ pad(𝑧))
return 𝑐

alg. D(𝑐)
𝑤 ← D𝐾 (𝑐)
𝑚 ← unpad(𝑤)
return𝑚

Figure 4: Padded Encryption Scheme.

Theorem 3.3 (Padding Composition). For any symmetric en-
cryption schemeSE = (K, E,D) and any padding scheme (P, pad, unpad),

let SE = (K, E,D) be the composed encryption scheme described in
Figure 4. Then for any positive integer Δ𝑚𝑎𝑥 associated to the rela-
tion RΔ, and any LH-CCA adversary A, there exists a corresponding
D-HIDE adversaryA𝑑ℎ , and a correspondingCS adversaryA𝑐𝑠 such
that for all simulators S

Advlh-cca
SE,RΔ

(A) ≤ AdvcsSE (A𝑐𝑠 ,S) + Adv
d-hide
P,Δ𝑚𝑎𝑥 (A𝑑ℎ)

(Proof Sketch). The proof proceeds as follows. We make a sin-

gle game hop from the LHCCA game to a new game G, and then

reduce this game to the DHIDE game. The game G is simply the

LHCCA game where calls to E𝐾 (·) and D𝐾 (·) are replaced with

calls to S(e, |·|) and W[S](·), respectively. Note that we make use

ofW instead ofW since the LH-CCA game suppresses output. Then

games LHCCA and G are indistinguishable up to the channel sim-

ulatability bound. Now G can be simulated via the DHIDE game

as follows. For every left-or-right query (𝑚0,𝑚1) the difference Δ
is set equal to |𝑚1 | − |𝑚0 | and queried to the Hide oracle to obtain

a value 𝑧. The ciphertext is then evaluated by feeding the value

(𝑧 + |𝑚0 |) to S(e, |·|). This provides a perfect simulation of game

G and thus the advantage in winning the DHIDE game is at least

that of winning game G. □

4 KNOWINGWHEN YOU’RE RIGHT
In most cryptographic settings security often translates to an ad-

versary’s success probability being negligible. In our setting such

a requirement is out of reach as it would drastically impact the

overall efficiency of our system and we have to content ourselves

with the adversary’s probability of success being only moderately

small. In an information theoretic setting the security measure is

usually expressed in terms of the statistical distance between two

distributions. However the fact that we now have to deal with non-

negligible success probabilities prompts us to reconsider whether

statistical distance is comprehensive enough as a measure. In par-

ticular, as a figure, statistical distance reflects only the adversary’s

probability of guessing correctly and ignores whether the adver-

sary is able to determine if it has guessed correctly or not. When

the statistical distance is negligible there is no point in discerning

between these two cases. In contrast, when the probability of suc-

cess is non-negligible, limiting the adversary’s ability to determine

whether it guessed correctly or not can in turn limit its ability to

act on that information and potentially curb its overall efficacy.

In the rest of this section, we introduce a new simple measure,

which we call cover difference, that quantifies the probability of an

adversary making a correct guess with certainty. We propose the

combination of statistical distance and cover difference as a more

comprehensive measure of security in this kind of settings. We will

show that, quite naturally, the cover difference is bounded above by

the statistical distance. Accordingly, an interesting measure is the

ratio of the cover difference to the statistical distance, representing

the proportion of times the adversary can recognise a distribution

with certainty out of the number of times it makes a correct guess.

Then, given two countermeasures offering similar bounds in terms

of statistical distance but significantly different values for the cover

difference, the one with the lower cover difference should emerge

as the preferable choice. In addition, as we will show later in this

section, the ratio of cover difference to statistical distance conveys



information regarding the rate at which the statistical distance

scales up with the number of samples available to the adversary.

Namely, the bigger the ratio, the more rapidly an adversary’s guess-

ing ability will increase with the number of available samples. Thus,

in the example above, the countermeasure with the lower cover

difference will perform better in terms of statistical distance over

multiple samples, even if they offer the same statistical distance

for a single sample. We emphasise that statistical distance remains

our primary security measure, and cover difference will serve only

as an analytical tool. Before delving into the technical details, we

provide some insight into why an attacker’s ability to ascertain the

veracity of its hypotheses is relevant in practice.

Let us start by pointing out that certain attacks are qualified

as such, not because they have a success probability higher than

what is considered inevitable, but precisely because they allow the

adversary to be certain about her success. Consider, for example,

the simplest variant of the SSH attack in [2] whereby an adversary

is able to verifiably recover 14 bits of plaintext with a probability of

2
−14

. Now, irrespective of how good the encryption is, an adversary

can always guess 14 bits of plaintext with a probability of 2
−14

.

That is, this attack does no better, in terms of success probability,

than an attacker that merely outputs 14 random bits. However, by

interacting with the decryption algorithm and observing its error

messages, the attacker is able to obtain confirmation of her success.

As a second example, let us examine, from an attacker’s perspective,

how this aspect plays out in attacks which proceed in an iterative

fashion. Instances of such attacks are padding oracle attacks such

as those appearing in [1, 3, 11, 15, 35, 50] and Bleichenbacher’s

attack on PKCS#1v1.5 [7, 31]. These attacks progress in stages,

where in each stage the adversary makes some queries to an oracle.

However, what gets queried in each stage depends on the responses

of the oracle in the prior stage. These attacks typically require

precise information from the oracle to succeed, and thus they can

be adversely affected if the oracle in question is ‘noisy’. Often the

oracle’s output is a single bit determined by the magnitude of a

timing difference or the difference in the length of an encrypted

error message. Any single error at any stage will cause the attack

to return the wrong output. Thus, even with relatively low noise,

the chance of the attack returning a wrong output can be quite

high as the probability of error aggregates over multiple stages.

In these cases the attacker’s ability to obtain certainty with high

probability as opposed to guessing correctly with high probability

becomes very valuable. A similar situation arises in volume attacks

against databases [21, 25] where noisy observations can be very

detrimental.

4.1 The Cover Difference
We introduce the cover difference as a measure of an adversary’s

ability to distinguish between two distributions with certainty. In-
formally it can be described as the average probability that when

one of two distributions is sampled, the sample value falls outside

the support of the other distribution. Thus since the sample value

can only have originated from one of the two distributions, in such

a case the adversary can distinguish with zero chance of error. The

formal definition is given below.

Definition 4.1 (Cover Difference). For two discrete distributions

𝑀 and 𝑁 over a sample space Ω, their cover difference is defined
as:

CD(𝑀, 𝑁 ) =
∑︁

𝑥∈⟨𝑀⟩\⟨𝑁 ⟩

𝑀 (𝑥)
2

+
∑︁

𝑥∈⟨𝑁 ⟩\⟨𝑀⟩

𝑁 (𝑥)
2

=
∑︁

𝑥∈⟨𝑀⟩△⟨𝑁 ⟩

1

2

[𝑀 (𝑥) + 𝑁 (𝑥)] .

Note that cover difference is not a metric since CD(𝑀, 𝑁 ) = 0

does not imply that 𝑀 = 𝑁 , and it does not satisfy the triangle

inequality
2
. Nevertheless it satisfies the following two useful prop-

erties.

Lemma 4.2. Let𝑀 ,𝑀 , 𝑁 , 𝑁 be discrete probability distributions
over a sample space Ω. It then holds that:

(a) The cover difference is bounded above by the statistical distance,
i.e.

CD(𝑀, 𝑁 ) ≤ SD(𝑀, 𝑁 ) .
(b) The cover difference is subadditive, i.e.

CD(𝑀 ×𝑀, 𝑁 × 𝑁 ) ≤ CD(𝑀, 𝑁 ) + CD(𝑀, 𝑁 ) .

Proof. To prove the first part of the Lemma we start from the

formula for calculating the cover difference

CD(𝑀, 𝑁 ) =
∑︁

𝑥∈⟨𝑀⟩\⟨𝑁 ⟩

𝑀 (𝑥)
2

+
∑︁

𝑥∈⟨𝑁 ⟩\⟨𝑀⟩

𝑁 (𝑥)
2

.

Since 𝑁 (𝑥) = 0 for 𝑥 ∈ ⟨𝑀⟩ \ ⟨𝑁 ⟩ and𝑀 (𝑥) = 0 for 𝑥 ∈ ⟨𝑁 ⟩ \ ⟨𝑀⟩
we can replace the summands to obtain

=
∑︁

𝑥∈⟨𝑀⟩\⟨𝑁 ⟩

|𝑀 (𝑥) − 𝑁 (𝑥) |
2

+
∑︁

𝑥∈⟨𝑁 ⟩\⟨𝑀⟩

|𝑀 (𝑥) − 𝑁 (𝑥) |
2

.

Now, the above expression is similar to that for statistical distance

except that the summation is over ⟨𝑀⟩△⟨𝑁 ⟩ instead of Ω. Then,
since ⟨𝑀⟩△⟨𝑁 ⟩ ⊆ ⟨𝑀⟩ ∪ ⟨𝑁 ⟩ ⊆ Ω and all summands are positive,

the claim follows, i.e.,

≤
∑︁
𝑥∈Ω

1

2

|𝑀 (𝑥) − 𝑁 (𝑥) | = SD(𝑀, 𝑁 ) .

We now move on to the second part of the Lemma. Evaluating the

left hand side using the formula yields

CD(𝑀 ×𝑀, 𝑁 × 𝑁 ) =
∑︁

(𝑥,𝑦)∈⟨𝑀×𝑀⟩\⟨𝑁×𝑁 ⟩

𝑀 (𝑥)𝑀 (𝑦)
2

+
∑︁

(𝑥,𝑦)∈⟨𝑁×𝑁 ⟩\⟨𝑀×𝑀⟩

𝑁 (𝑥)𝑁 (𝑦)
2

. (1)

We now make use of the fact that ⟨𝑀 ×𝑀⟩ \ ⟨𝑁 × 𝑁 ⟩ can be ex-

pressed as the union of ⟨𝑀⟩ \ ⟨𝑁 ⟩ × ⟨𝑀⟩ and ⟨𝑀⟩ × ⟨𝑀⟩ \ ⟨𝑁 ⟩. Then
the first term on the right hand side corresponds to the probability

of (𝑥,𝑦) being contained in this union. Applying the union bound

to the first term yields∑︁
(𝑥,𝑦)∈⟨𝑀×𝑀⟩\⟨𝑁×𝑁 ⟩

𝑀 (𝑥)𝑀 (𝑦)
2

≤
∑︁

(𝑥,𝑦)∈⟨𝑀⟩\⟨𝑁 ⟩×⟨𝑀⟩

𝑀 (𝑥)𝑀 (𝑦)
2

+
∑︁

(𝑥,𝑦)∈⟨𝑀⟩×⟨𝑀⟩\⟨𝑁 ⟩

𝑀 (𝑥)𝑀 (𝑦)
2

.

2
Which is why we choose to call it a difference rather than a distance. Besides, the

term also hints to its relation to the set difference between supports.



Expanding each summation on the right into two summations over

single variables and then simplifying, we obtain

=
∑︁

𝑥∈⟨𝑀⟩\⟨𝑁 ⟩

𝑀 (𝑥)
2

+
∑︁

𝑦∈⟨𝑀⟩\⟨𝑁 ⟩̂

𝑀 (𝑦)
2

. (2)

Applying a similar argument to the second term on the right hand

side of (1) yields

∑︁
(𝑥,𝑦)∈⟨𝑁×𝑁 ⟩\⟨𝑀×𝑀⟩

𝑁 (𝑥)𝑁 (𝑦)
2

≤
∑︁

𝑥∈⟨𝑁 ⟩\⟨𝑀⟩

𝑁 (𝑥)
2

+
∑︁

𝑦∈⟨𝑁 ⟩\⟨𝑀 ⟩̂

𝑁 (𝑦)
2

. (3)

By combining (1), (2), and (3), and grouping terms together we

obtain the claimed result. □

4.2 Distinguishing With Multiple Samples
An adversary’s ability to distinguish between two distributions

depends on the number of independent samples available to the

adversary. In general we expect that the more samples become

available the better its ability to distinguish. Less obvious, how-

ever, is how its distinguishing ability scales with the number of

samples. Below we derive an upper bound on the statistical dis-

tance for multiple samples in terms of the KL-divergence and cover

difference for a single sample and the number of samples. This

bound is stated formally in Theorem 4.3. Recall that the statistical

distance represents the best possible distinguishing advantage of

any (unbounded) adversary. Consequently, Theorem 4.3 yields an

upper bound on the distinguishing advantage of any multisam-

ple distinguisher. Intuitively, the right hand side of inequality (5)

in Theorem 4.3 decomposes the single-sample difference between

two distributions into two mutually exclusive components: the KL-

divergence and the cover difference. Specifically, the KL-divergence

component is evaluated over the points contributing to the statisti-

cal distance between the two distributions that do not contribute to

the cover difference. Then, the notable feature that emerges from

Theorem 4.3 is that the bound on the cover difference component

is linear in the number of i.i.d. samples 𝑞, whereas the bound on

the remaining component is proportional to

√
𝑞. Furthermore, in

Section 4.3 we will show that the linear bound on the cover differ-

ence is tight for the range of values that we are interested in. Hence,

we see that the statistical distance grows (at most) proportionately

to

√
𝑞 except for the cover difference component. Accordingly, in

order to limit the adversary’s benefit from the multiple samples

that it may gather, we must keep the cover difference component

to a minimum.

Theorem 4.3 (Multisample Distinguisher). Let𝑀 and 𝑁 be
two discrete probability distributions over a sample space Ω. Consider
then an experiment where an adversary attempts to distinguishing 𝑞
i.i.d. samples drawn from one of these two distributions. It then holds
that:

CD(𝑀𝑞, 𝑁𝑞) ≤ 𝑞 · CD(𝑀, 𝑁 ) (4)

SD(𝑀𝑞, 𝑁𝑞) ≤ 2𝑞 · CD(𝑀, 𝑁 ) +
√︂
𝑞

2

· D(𝑀 ∥𝑁 ) , (5)

where

𝑀 (𝑥) =
{

0 : 𝑥 ∈ ⟨𝑀⟩ \ ⟨𝑁 ⟩
𝐴𝑀 ·𝑀 (𝑥) : 𝑥 ∈ ⟨𝑀⟩ ∩ ⟨𝑁 ⟩

𝑁 (𝑥) =
{

0 : 𝑥 ∈ ⟨𝑁 ⟩ \ ⟨𝑀⟩
𝐴𝑁 · 𝑁 (𝑥) : 𝑥 ∈ ⟨𝑁 ⟩ ∩ ⟨𝑀⟩

and 𝐴𝑀 and 𝐴𝑁 are real-valued normalising factors.

Proof of Theorem 4.3. Let𝑀 and 𝑁 be as defined in the The-

orem statement. Inequality (4) follows directly from repeated ap-

plication of the subadditive property in Lemma 4.2, so we focus

on deriving inequality (5). Repeated application of the triangle

inequality yields

SD(𝑀𝑞, 𝑁𝑞) ≤ SD(𝑀𝑞, 𝑀𝑞) + SD(𝑁𝑞, 𝑁𝑞) + SD(𝑀𝑞, 𝑁𝑞) . (6)

Expanding the first term on the right-hand side we note that

SD(𝑀𝑞, 𝑀𝑞) =
∑︁
®𝑥∈Ω𝑞

max

(
𝑀𝑞 ( ®𝑥) −𝑀𝑞 ( ®𝑥), 0

)
=

∑︁
®𝑥∈⟨𝑀𝑞 ⟩\⟨𝑁𝑞 ⟩

𝑀𝑞 ( ®𝑥) , (7)

since by definition 𝑀𝑞 ( ®𝑥) = 0 for ®𝑥 ∈ ⟨𝑀𝑞⟩ \ ⟨𝑁𝑞⟩ and 𝑀𝑞 ( ®𝑥) ≥
𝑀𝑞 ( ®𝑥) otherwise. Similarly, it follows that

SD(𝑁𝑞, 𝑁𝑞) =
∑︁

®𝑥∈⟨𝑁𝑞 ⟩\⟨𝑀𝑞 ⟩

𝑁𝑞 ( ®𝑥) . (8)

Then, by the definition of cover difference, adding up equations (7)

and (8) yields

SD(𝑀𝑞, 𝑀𝑞) + SD(𝑁𝑞, 𝑁𝑞) = 2CD(𝑀𝑞, 𝑁𝑞) . (9)

Now, note that ⟨𝑁𝑞⟩ = ⟨𝑀𝑞⟩ = (⟨𝑀⟩ ∩ ⟨𝑁 ⟩)𝑞 and hence the value

of D(𝑀𝑞 ∥𝑁𝑞) is finite. We can therefore apply Lemma 2.1 followed

by the subadditivity of KL divergence to obtain

SD(𝑀𝑞, 𝑁𝑞) ≤
√︂

1

2

· D(𝑀𝑞 ∥𝑁𝑞)

=

√︂
𝑞

2

· D(𝑀 ∥𝑁 ) (10)

Combining (6), (9), and (10) yields the desired result. □

Remarks. Note that in the special case where ⟨𝑀⟩ ⊆ ⟨𝑁 ⟩, we can
express the bound in (5) directly in terms of D(𝑀 ∥ 𝑁 ). Here 𝑀
reduces to𝑀 , since ⟨𝑀⟩ \ ⟨𝑁 ⟩ = ∅. Then we have that

D(𝑀 ∥𝑁 ) =
∑︁
𝑥∈⟨𝑁 ⟩

𝑀 (𝑥) ln
[
𝑀 (𝑥)
𝑁 (𝑥)

]
=

∑︁
𝑥∈⟨𝑁 ⟩

𝑀 (𝑥)
{
ln

[
𝑀 (𝑥)
𝑁 (𝑥)

]
− ln𝐴𝑁

}
= D(𝑀 ∥𝑁 ) − ln[1 − 2CD(𝑀, 𝑁 )] .

Results similar in spirit to Theorem 4.3 have appeared in ear-

lier works. In [40], Renner showed that under certain restricted

conditions the statistical distance between two distributions grows

proportionally to the square root of the number of samples. How-

ever the constant factor in the bound is proportional to the inverse

of the minimum probability over all elements in the sample space.

Since we will be concerned with distributions with arbitrarily small



probabilities this bound is too loose to be of any use. A very sim-

ilar result to inequality (5) in Theorem 4.3 can be derived using

the Chi-squared method [13] which combines Pinsker’s inequality

and the 𝜒2
-divergence [33]. In our case, relying directly on the

KL-divergence instead of the 𝜒2
-divergence yields a better bound.

4.3 A Cover Difference Lower Bound
We now show that the elevated rate at which the cover difference

component scales as a function of the number of samples, is in

fact inherent and not merely an artefact of the bound derived in

Theorem 4.3. Namely, there is a simple generic attack showing

that the upper bound on the cover difference component is tight,

especially when its value is small. The cover difference corresponds

to the probability of sampling a value that automatically leaks from

which distribution it was sampled, since that value is only contained

in the support of one of the two distributions. Thus, when observing

𝑞 i.i.d. samples, it suffices that just one sample is of this kind for the

adversary to be able to determine with certainty the distribution

from which the samples originated. Thus, the cover difference for

the multisample distributions is simply the probability that at least

one sample is of this kind. Therefore

CD(𝑀𝑞, 𝑁𝑞) = 1 − (1 − CD(𝑀, 𝑁 ))𝑞 ,

where for sufficiently small values of CD(𝑀, 𝑁 ) this expression is

closely approximated by

≈ 𝑞 · CD(𝑀, 𝑁 ) .

5 OUTMATCHING UNIFORM PADDING
Informed by the analysis in Section 4 we are now better equipped

to identify a suitable distribution for length padding. We start by

examining the multisample security of the uniform distribution

and expose its weaknesses.

5.1 The Problem with Uniform Padding
The Multisample Distinguisher Theorem suggests that we use a

distribution such that the cover difference between this distribution

and its shifted copy is as small as possible. This would ensure that

the statistical distance would grow at most proportionally to

√
𝑞

rather than linearly in 𝑞. This means that the adversary is not as

effective in amplifying its advantage through multiple samples. In

addition, besides reducing its chance of distinguishing correctly it

also reduces its chance of distinguishing with certainty. Under this

light we then see that uniform random padding performs rather

poorly. Let 𝑈 (𝑙) denote a discrete uniform distribution over the

interval [0, 𝑙], and𝑈Δ (𝑙) denote the same distribution offset by Δ
points to the right. In this case, we immediately observe that for

any offset Δ, the statistical distance is comprised solely of the cover

difference, i.e.,

SD(𝑈 (𝑙),𝑈Δ (𝑙)) = CD(𝑈 (𝑙),𝑈Δ (𝑙)) =
Δ

𝑙 + 1

.

Thus for a uniform distribution the cover difference takes on its

maximum value possible. This is due to the fact that the values

on which the two distributions differ are contained in exactly one

of the supports, as shown in the example in Figure 5. This also

0 10 20 30
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4

·10
−2

Figure 5: Illustrating the statistical distance between two
uniform distributions. Blue:𝑈 (30), Red:𝑈Δ (30), Δ = 3.

means that the attack described in Section 4.3 is directly applicable

to uniform padding. Reconciling this with the result by Tezcan

and Vaudenay [47], we see that the uniform distribution achieves

the best possible statistical distance for a single sample but it then

increases at the worst possible rate as the number of samples is

increased. In addition the distinguishing advantage corresponds

exactly to the probability of the adversary distinguishing with

certainty.

5.2 Searching for Alternatives
We seek to improve over the uniform distribution by lowering the

cover difference, while maintaining a similar tradeoff between the

average padding length and the (single sample) statistical distance

for a given offset Δ. That way, we retain a comparable bound for

statistical distance in the single-query setting, but we improve in

terms of the cover difference as well as statistical distance in the

multiple query setting. Intuitively, it is easy to see that the cover

difference between a distribution and its shifted copy, is related to

the tails of the distribution. Accordingly, distributions with their

probability mass concentrated in the middle and small tails appear

to be a favourable choice towards this goal. We examine two such

distributions: the Laplace distribution and the Gaussian distribution.

Besides fitting the above profile the other reason for choosing

these distributions is their suitability for Differential Privacy ap-

plications [17]. Indeed length hiding can be viewed as a specific

instance of a Differential Privacy problem. Hiding a length differ-

ence is analogous to hiding the value corresponding to a single

entry in a database from the sum of all entries in the database. On

the other hand in our case we are not concerned with maintaining

a certain level of accuracy in the statistic and we are also using a

different security measure than differential privacy. Nevertheless

this analogy makes the Laplace and Gaussian distributions natural

candidates to consider for our setting.

5.3 Discrete Laplace Distribution
The discrete Laplace distribution 𝐿(𝑎, 𝑏), scaled by a factor 𝑎 and

centred at 𝑏, is given by:
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Figure 6: Illustrative example for the truncated discrete
Laplace distribution. Blue: 𝐿(0.3, 15), Red: 𝐿Δ (0.3, 15), Δ = 3.

𝑝𝐿 (𝑥) = tanh

(𝑎
2

)
𝑒−𝑎 |𝑥−𝑏 | =

(
𝑒𝑎 − 1

𝑒𝑎 + 1

)
𝑒−𝑎 |𝑥−𝑏 | .

However this does not quite fit our purposes yet, so we will make

use instead of a Laplace distribution that is truncated on the left

side and rescaled accordingly. Alternatively one could also truncate

both sides at the expense of doubling the cover difference. Since

the cover difference will generally be quite small this should not

affect our analysis significantly. Then for all 𝑥 ≥ 0, the (one-sided)

truncated Laplace distribution 𝐿(𝑎, 𝑏) is defined as:

𝑝�̄� (𝑥) = 𝐴𝐿 tanh

(𝑎
2

)
𝑒−𝑎 |𝑥−𝑏 | =

[
𝑒𝑎𝑏 (𝑒𝑎 − 1)

𝑒𝑎𝑏 (𝑒𝑎 + 1) − 1

]
𝑒−𝑎 |𝑥−𝑏 | ,

where

𝐴𝐿 =

(
1

1 − 𝑒−𝑎𝑏
𝑒𝑎+1

)
.

The truncated Laplace distribution is illustrated in Figure 6 with

parameter 𝑎 = 0.3 and 𝑏 = 15. Now, as we vary the parameters

(𝑎, 𝑏) some opposing forces come into play. In order to draw a

comparison with the uniform distribution we set these parameters

as follows. When the area under the truncated part is small the

average padding length approaches the value 𝑏. For a uniform

distribution the average padding length is equal to:

𝑙∑︁
𝑥=0

𝑥

𝑙 + 1

=
𝑙 (𝑙 + 1)
2(𝑙 + 1) =

𝑙

2

.

Thus we start by setting 𝑏 = 𝑙
2
, so that both distributions result in

roughly equal overhead, and then go on to adjust the value of 𝑎.

Now, as 𝑎 increases the area under the truncated part and the cover

difference both decrease. To see this, note that the area under the

truncated part is equal to (1 − 1/𝐴𝐿), and the cover difference is

given by

CD(𝐿(𝑎, 𝑏), 𝐿Δ (𝑎, 𝑏)) =
𝐴𝐿

2

tanh

(𝑎
2

) Δ−1∑︁
𝑥=0

𝑒−𝑎 |𝑥−𝑏 | .
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Figure 7: Illustrative example for the truncated discrete
Gaussian distribution. Blue: 𝑁 (15, 5), Red: 𝑁Δ (15, 5), Δ = 3.

However as 𝑎 increases the statistical distance increases. The most

direct way to see this is to consider the case for Δ = 1, where the

statistical distance reduces to

SD(𝐿(𝑎, 𝑏), 𝐿1 (𝑎, 𝑏)) =
𝐴𝐿

2

tanh

(𝑎
2

)
.

Thus by varying 𝑎, within the range of values where the average

padding length remains close to 𝑏, we can strike different tradeoffs

between cover difference and statistical distance. Note that when

Δ = 1 the value of the statistical distance is equal to the peak

value of the distribution. Thus, from the examples displayed in

Figures 5 and 6 we see that for the same average length of 15, and

Δ = 1 the Laplace yields a statistical distance of 0.1496, whereas

for the uniform distribution its value is 0.0322. The relationship

between the peak value and the statistical distance for Δ = 1 holds

also for the Gaussian distribution. Thus, due to its flatter peak, a

Gaussian distribution appears more promising as it might be able to

approach the statistical distance of the uniform distribution more

closely. Indeed, this turns out to be the case.

5.4 Discrete Gaussian Distribution
We opt for a discrete form of the Gaussian distribution that is ob-

tained by rounding rather than sampling points from the probability

density function. This means that the probability of an integer 𝑥

is obtained by integrating the PDF over the interval (𝑥 − 1

2
, 𝑥 + 1

2
]

rather than sampling the PDF at 𝑥 . As we describe in Section C, a

rounded Gaussian is more appealing in terms of implementation.

Analogous to the previous setting, we shift the Gaussian by ` and

truncate all values less than zero. That is, for any integer value

𝑥 ≥ 0 the probability mass function is given by:

𝑝�̄� (𝑥) =
𝐴𝐺

𝜎
√

2𝜋

∫ 𝑥+ 1

2

𝑥− 1

2

𝑒
− 1

2

(
𝑡−`
𝜎

)
2

𝑑𝑡 ,

where

1

𝐴𝐺
= 1 − 1

𝜎
√

2𝜋

∫ − 1

2

−∞
𝑒
− 1

2

(
𝑡−`
𝜎

)
2

𝑑𝑡 .

Note that due to truncation the actual mean will be slightly offset

from `, and even if we ignore the effect of truncation, the variance



of the rounded Gaussian is still not equal to 𝜎2
, although it is

relatively close. A better approximation is given by 𝜎2 + 1

12
, which

can be viewed as an application of the well-known Sheppard’s

correction [46], or a consequence of Janson’s result [23] showing

that the variance of the rounded Gaussian approaches this value in

the limit as 𝜎 increases.

An illustrative example of the Gaussian distribution is shown

in Figure 7. We set parameters as before, by setting ` = 𝑏 = 𝑙
2
and

vary 𝜎 to reach a suitable compromise between cover difference

and statistical distance. In the example displayed in Figure 7 we

set 𝜎 = 5.0 to obtain a cover difference of 0.0009 when Δ = 1 and

0.0052 when Δ = 3, which is comparable to the respective values

of 0.0017 and 0.0069 for the Laplace distribution
3
. Yet the Gaussian

peaks at 0.0797, almost half the value of the Laplace distribution

(0.1496). Thus, in this case, we observe that the statistical distance

when Δ = 1 is better for the Gaussian than the Laplace distribution

for comparable values of cover difference. Indeed in our numerical

evaluations the Gaussian always struck a better tradeoff between

cover difference and statistical distance than the Laplace distribu-

tion. Accordingly, we make it our preferred choice and focus on

comparing the performance of the uniform distribution to that of

the Gaussian distribution.

Clearly a Gaussian can do much better than the uniform distri-

bution when our measure is solely the cover difference, since in

the case of the Gaussian it can be made arbitrarily small for the

same average padding length. However, as we can observe from the

example just described, in the case of a single sample the uniform

distribution still outperforms the Gaussian distribution in terms of

statistical distance. As the number of samples increases, however,

the statistical distance will increase in both cases – but at different

rates, as predicated by Theorem 4.3. As we shall observe from our

experimental results, the Gaussian catches up and outperforms

the uniform distribution already at a relatively small number of

samples.

The application of Theorem 4.3 to the uniform distribution is

fairly straightforward, but not as much in the case of a rounded

Gaussian distribution. This is mainly because without a closed form

expression for the cumulative distribution function of a Gaussian

we cannot express its KL divergence as a concise expression. Nev-

ertheless we can evaluate it numerically, which was our preferred

approach, or we can obtain a fairly good and quick approximation

as we now describe. For any offset Δ the cover difference is given

by:

CD(𝑁 (`, 𝜎), 𝑁Δ (`, 𝜎)) =
Δ−1∑︁
𝑥=0

𝑝�̄� (𝑥)
2

=
𝐴𝐺

2𝜎
√

2𝜋

∫ Δ− 1

2

− 1

2

𝑒
− 1

2

(
𝑡−`
𝜎

)
2

𝑑𝑡 .

As for the KL-divergence, when the cover difference is small we can

approximate it by using the formula for KL-divergence between two

continuous Gaussian distributions [28]. Namely for two continuous

Gaussian distributions 𝑁 (`1, 𝜎1) and 𝑁 (`2, 𝜎2) the KL divergence

3
These values were computed numerically in Python.

is given by:

D(𝑁 (`1, 𝜎1) ∥𝑁 (`2, 𝜎2)) = ln

[
𝜎2

𝜎1

]
+
𝜎2

1
+ (`1 − `2)2

2𝜎2

2

− 1

2

.

Now, letting `1 − `2 = Δ and 𝜎1 = 𝜎2 = 𝜎 , we obtain

D(𝑁 (`, 𝜎) ∥𝑁Δ (`, 𝜎)) ≈
Δ2

2𝜎2
.

5.5 Multisample Attacks on the Uniform and
Gaussian Distributions

Besides yielding a generic upper bound for the distinguishing ad-

vantage between two distributions in a multi-user setting, Theo-

rem 4.3 provided the intuition that led us to the truncated discrete

Gaussian as a suitable alternative to the uniform distribution. How-

ever for these specific distributions we can quantify their security

more accurately than the upper bounds resulting from Theorem 4.3.

Accordingly, let us now turn our attention to identifying suitable

distinguisher strategies and corresponding lower bounds. In Sec-

tion 4.3 we described a generic attack to derive a lower bound for

cover difference in a multisample setting. In that attack the distin-

guisher’s strategy was to hope for the occurrence of at least a single

sample that identifies the distribution from which it came from. In

such a case, the output of the distinguisher is determined by this

single sample. Now in the case of two shifted uniform distributions

this turns out to be the best that a distinguisher can do. This is easily

verified by noting that all other sample vectors are equally likely

to have come from either distribution, and thus do not contribute

to the statistical distance. It then follows that

SD(𝑈𝑞 (𝑙),𝑈𝑞Δ (𝑙)) = CD(𝑈𝑞 (𝑙),𝑈𝑞Δ (𝑙)) = 1 −
(
1 − Δ

𝑙 + 1

)𝑞
.

Now, since the statistical distance is an upper bound on the success

probability of any distinguisher and this attack’s success proba-

bility matches it exactly, the attack is optimal. The corresponding

strategy for the distinguisher is therefore to look for a sample that

determines the distribution with certainty and if no such sample is

present it outputs a bit at random.

In the case of two shifted truncated discrete Gaussians, the cover

difference can be made arbitrarily small but the attacker can still

gather information from its set of samples even if none of them

identifies the distribution from which it originated. One strategy is

to determine, for each sample, which distribution it is more likely

to have originated from and take a majority vote across all samples.

This strategy was considered by Sahai and Vadhan in [44] where

it was shown that its success probability can be bounded from

below using Hoeffding’s inequality. However, as pointed out by

Reyzin[41] this bound is only meaningful for relatively large sample

sets, namely when 𝑞 > 1/𝜖2
where 𝜖 is the statistical distance for

a single sample. Thus the Hoeffding bound is of little use for our

setting. In turn, in [41] Reyzin provides an alternative bound that

covers small sample sets. His bound, however, is only applicable if

at least one of the two distributions has a peak that is less than half

the statistical distance between the two distributions. Accordingly

this limits its applicability to the case of truncated Gaussians since

the statistical distance when Δ = 1 is precisely equal to the peak

value of the Gaussian, which violates this condition. Moreover,



even when this condition is satisfied we do not obtain a meaningful

bound for the typical values that we are interested in.

Thus the asymptotic techniques typically employed in cryptogra-

phy do not seem towork in this case. Insteadwewill derive an attack

strategy and a fairly accurate approximation of its success proba-

bility using standard statistical techniques. The attacker’s strategy

is as follows: if any of the samples identifies the distribution with

certainty then that sample determines the output, otherwise the

adversary computes the average of the samples and its output is de-

termined by whether the average value exceeds a certain threshold

or not. In fact this strategy is known to be optimal when attempting

to distinguish between two discrete (sampled not rounded) Gaus-

sians, since it corresponds to the maximum likelihood test and by

the Neyman-Pearson lemma it is optimal [33]. In order to approxi-

mate the success probability of this attack we compute the means of

the two distributions conditioned on the event that none of the sam-

ples is unique to any of the two distributions. We set the threshold

value to be the midpoint between the means. We now use the fact

that the standard deviation of the sample mean for a distribution

with standard deviation 𝜎 ′, is 𝜎 ′/√𝑞, where 𝑞 is the sample size, and

use this to approximate the distinguishing advantage. That is, we

set 𝜎 ′ to be the standard deviation of the rounded Gaussian (using

Sheppard’s correction) and use the CDF of a standard Gaussian

with these parameters to model the distribution of the sample mean

to approximate the probability that the sample mean from each

distribution is below the threshold. Then our approximation of the

distinguishing advantage of this adversary is given by:

Pr [ 𝐸 ]+Pr

[
𝐸

] {
Pr

[
0← A | 𝑏 = 0, 𝐸

]
− Pr

[
0← A | 𝑏 = 1, 𝐸

]}
= 1 − (1 − CD(𝑁 (`, 𝜎), 𝑁Δ (`, 𝜎)))𝑞) +

(1 − CD(𝑁 (`, 𝜎), 𝑁Δ (`, 𝜎)))𝑞) ×{
CDF

(
¯̀0 + ¯̀1

2

, ¯̀0,

√︂
𝜎2 + 1

12

)
− CDF

(
¯̀0 + ¯̀1

2

, ¯̀1,

√︂
𝜎2 + 1

12

)}
.

In the above 𝐸 denotes the event that one of the samples identi-

fies the distribution with certainty, and the values ¯̀0 and ¯̀1 denote

the means of the two distributions conditioned on 𝐸 not occur-

ring. As we shall see next, our experiments indicate that when the

truncated component is small this approximation is fairly accu-

rate. Furthermore, due to the similarity between a rounded discrete

Gaussian distribution and a sampled discrete Gaussian distribution,

we expect this attack strategy to be close to optimal in practice.

5.6 Comparing Distributions
Figure 8 shows a comparison of the security offered by each of the

three padding distributions for a fixed set of parameters, namely

𝑈 (100), 𝐿(0.12, 50), and 𝑁 (50, 15). We evaluated the distinguishing

advantages for each distribution when Δ = 1. We chose these

parameters such that (a) all three yield an average length close to 50,

and (b) the Gaussian and Laplace distributions yield a similar cover

difference for Δ = 1. With these parameters, the average overhead

is 50 for the uniform distribution, 50.02 for the truncated Gaussian

distribution, and 50.07 for the truncated Laplace distribution.

The solid black line shows the distinguishing advantage for

the best possible attack against the uniform distribution that was

described in Section 4.3 and Section 5.5. As noted already, the dis-

tinguishing advantage of this attack matches exactly the statistical

distance, which for the uniform distribution, also turns out to be

equal to the cover difference. Thus the black plot represents not only

the adversary’s ability to distinguish, but its ability to distinguish

with certainty. In contrast the orange and teal solid lines represents

the distinguishing advantage of the threshold attack based on the

sample mean against the truncated Gaussian and truncated Laplace

distributions respectively. The solid-line plots were computed us-

ing our approximation formula derived at the end of Section 5.4

and its adaptation to the Laplace distribution, by replacing 𝑁 (𝑚,𝜎)
with 𝐿(𝑎, 𝑏) and the variance 𝜎2

with 2𝑎−2
. The matching black

crosses, ‘×’ and ‘+’, were evaluated by simulating the attack and

counting the number of times the attack output 1 when presented

with samples from each distribution—corresponding to theD-HIDE
advantage in Section 3.4. Each point was evaluated by simulating

the attack 100,000 times for each of the two distributions and then

using these values to calculate the distinguishing advantage. The

dotted plots show upper bounds for the uniform and truncated

Gaussian distributions obtained via Theorem 4.3, and the dash-

dotted plots at the bottom represent the cover difference for the

Gaussian and Laplace distributions.

For the Laplace and Gaussian distributions one can vary 𝑎 and 𝜎

to strike different trade-offs between statistical distance and cover

difference. However, in our experiments, the Gaussian distribu-

tion emerged as the favoured choice as it always outperformed the

Laplace distribution. When comparing the solid black and solid

orange plots, we observe that significantly more samples are re-

quired for the truncated Gaussian distribution than the uniform

distribution to attain the same distinguishing advantage. Thus al-

ready when considering plain distinguishing advantage (equivalent

to statistical distance for both distributions) the truncated Gaussian

performs significantly better than the uniform distribution. When

considering the adversary’s ability to distinguish with certainty

(CD), the performance disparity is much more pronounced—the

teal dash-dotted line vs the solid black line. Thus we observe that

the proportion of the distinguishing advantage in which the ad-

versary is certain about its output is rather low for the truncated

Gaussian and Laplace, whereas for the uniform distribution the

distinguishing advantage matches exactly its ability to distinguish

with certainty.

6 SUMMARY AND OPEN PROBLEMS
In summary, the rationale leading us to the Gaussian distribution

was as follows. The analysis in Section 4 inidicates that distributions

with a probability mass concentrated in the middle and small tails

are beneficial. Combined with the analogy to Differential Privacy

outlined in Section 5.2 this pointed us to two natural candidates,

the Laplace and the Gaussian distributions. In our analysis, the

Gaussian emerged as the preferred choice due to its lower peak,

which translates to a lower single-sample statistical distance. This
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Figure 8: Comparison between Uniform and Gaussian padding, (Δ = 1, average padding length = 50).

was reflected in our experiments where the Gaussian always outper-

formed the Laplace. That said, it remains an open question whether

the Gaussian distribution is the optimal choice. Indeed even for-

mulating what one means by a distribution being optimal for this

setting is a challenging task, as there are many variables to consider,

such as the cover difference, the statistical distance, the average

overhead, and the shift Δ. It may well be that no single distribu-

tion is optimal over the complete range of possible values. We did

not pursue this direction in this work, and we leave it as an open

problem.

Nevertheless, we offer the following informal argument in sup-

port of Gaussian padding as a suitable choice. The central limit

theorem says that the average of multiple samples (from any dis-

tribution) will quickly approach a Gaussian distribution. Thus the

averaging attack described in Section 5.5, which turns out to be

optimal for Gaussian padding (by the Neyman-Pearson lemma), is,

in fact, applicable to all padding distributions once a relatively small

amount of samples is reached. On the other hand, other distribu-

tions may also be susceptible to more severe attacks, as is the case

for uniform padding. We, therefore, think it is unlikely that another

distribution can significantly outperform Gaussian padding.

In Appendix B we compare empirically how the three types of

padding affect attacks such as CRIME and BREACH that exploit

the use of compression in combination with TLS. Here we note

that Gaussian padding increases the effort required by these attacks

substantially already at a reasonable level of overhead. The counter-

measure to CRIME was to disable compression in TLS. Accordingly,

the padding overhead may be compensated or outweighed by the

compression if it is enabled. In Appendix C we discuss potential

security pitfalls in implementing Gaussian padding and outline how

to implement it securely.
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A PRIOR TREATMENTS OF LENGTH HIDING
We provide here an overview of PRS11 and TV11 and discuss their

respective limitations.

A.1 Paterson-Ristenpart-Shrimpton 2011
In their analysis of TLS 1.2, Paterson, Ristenpart, and Shrimpton in-

troduced a security notion called Length-Hiding Authenticated En-

cryption (LHAE) [36]. They consider encryption with an extended

interface which additionally takes as input a value ℓ specifying the

desired ciphertext length. The encryption algorithm will in turn

either return a ciphertext of the specified length or the special sym-

bol ⊥ if it cannot accommodate this length. Then the LHAE game is

defined analogously to the AE game with a left-or-right encryption

oracle taking inputs of the form (ℓ,𝑚0,𝑚1). However in the LHAE
game, it is no longer required that |𝑚0 | = |𝑚1 |, instead an output

is returned as long as E𝐾 (ℓ,𝑚0) ≠⊥ and E𝐾 (ℓ,𝑚1) ≠⊥. We refer

to [36] for a complete description of the LHAE game.

This security definition was motivated by the use of padding

in the TLS protocol and an attack against TLS 1.2, discovered by

the same authors, that exploited this padding. In essence, for some

TLS ciphertext encrypted using CBC and containing non-minimal

padding, an attacker can turn it into a distinct but valid ciphertext

by truncating the last block and flipping some bits in the IV. This

is an infringement of ciphertext integrity thereby rendering the

scheme insecure in the AE sense. On the other hand, it is unclear

whether this attack is a real nuisance to the security of TLS. In

particular, it does not result in a plaintext forgery, as the plaintext

is unaltered, and does not seem to undermine the confidentiality of

TLS either, since the adversary will not be able to observe any differ-

ence in behaviour on the TLS connection for the forged ciphertext.

Nevertheless, a simple variation of the above attack can be used to

distinguish two equal-length ciphertexts containing messages of

differing lengths, say an encryption of “YES” from an encryption

of “NO”. Specifically, if the original ciphertext contains a message

of the appropriate size then the forged ciphertext will be valid, but

will otherwise result in an invalid ciphertext and generate a TLS

error that is noticeable to the adversary. This is certainly a practical

concern that TLS aims to protect against through its use of padding.

The authors of [36] then argue that by allowing the adversary to be

challenged on messages of differing lengths, the LHAE definition

clearly captures this latter attack whereas the AE definition does

not.

Despite the above motivation, in our view, the LHAE definition

has some undesirable features, and, in addition, it does not cap-

ture all aspects of length-hiding encryption that one would expect.

Intuitively, the name suggests that any scheme meeting this no-

tion would hide the lengths of its messages to some extent. On the

contrary, however, any AE-secure scheme with constant ciphertext

expansion, which trivially leaks the full message length, will meet

this notion. Thus, if an encryption scheme meets this notion there

is no guarantee whatsoever that it hides the message-length in any

way. This may seem at odds with the motivation just described,

where LHAE appears to capture a broader class of attacks than

AE. The reason for this is a circularity in the security definition,

where the strength of the LHAE notion depends on the scheme

itself. Specifically, the wider the range of ciphertext lengths that the

scheme admits for a given message length, the stronger the security

notion. This dependency is undesirable as it does not allow for an

objective comparison between distinct encryption schemes, as the

notion yields different security properties for different schemes.

Additionally, it turns out that the LHAE definition is not signifi-

cantly stronger than standardAE security. This is subject to whether
AE security is formulated using left-or-right indistinguishability (as

in [36]) or indistinguishability from random bits [43]. To make this

comparison we need to extend these two notions for encryption

schemes with variable output length, but this is fairly straightfor-

ward. It can then be shown that while LHAE is strictly stronger than
the left-or-right formulation, any scheme satisfying the indistin-

guishability from random bits formulation of AE will automatically

satisfy LHAE.
Yet, perhaps themost important limitation of the LHAE definition

is that it does not provide us with any insight as to how we should

choose the ciphertext length. In the LHAE game this is handled by

the adversary but in practice the sender must have some procedure

for determining the ciphertext length based on the message length.

In fact, the overall length-hiding ability of the encryption scheme

depends crucially on this procedure. However, in the LHAE defin-

tion, this mechanism is taken completely out of the picture, and

thereby, its efficacy cannot be evaluated. Furthermore the LHAE
games focusses on a very limited scenario, where the adversary

is only challenged on ciphertexts of the same length, and conse-

quently the definition says nothing about an adversary’s ability to

distinguish ciphertexts of different lengths. For schemes employing

randomised procedures to determine the ciphertext length, the prob-

ability that two messages map to ciphertexts of differing lengths is

rather high. As such the LHAE definition misses many challenge

pairs that arise in practice when ciphertext lengths are determined

probabilistically. Put differently, an adversary’s advantage in the

LHAE game does not accurately reflect its advantage in practice,

since the probability that the two messages map to ciphertexts of

the same length may be quite small.

A.2 Tezcan-Vaudenay 2011
Tezcan and Vaudenay take a very different approach in analysing

the security of length-hiding encryption [47]. They focus on the

common tactic of appending randomised padding to the message

before encryption, a process which they refer to as preencryption.
They consider a security notion Δ-IND-OTE for encryption, analo-

gous to IND-CPA, with the vital distinction that message lengths

are allowed to differ by at most Δ bits. However, in Δ-IND-OTE the

adversary can query the left-or-right encryption oracle only once.

They show that appending padding of uniformly distributed

length is a nearly optimal preencryption scheme for achieving

Δ-IND-OTE security. Roughly, they show that for any preencryp-

tion scheme with maximum padding length 𝐵, there always exists

an adversary with distinguishing advantage 1/(2
⌈
𝐵
Δ

⌉
). On the other
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hand, the advantage is bounded above by the statistical distance

between the two message length distributions. When the padding

length is sampled uniformly over the interval (0, 𝐵] and the two

messages are Δ bits apart in length, the statistical distance works

out to be Δ/2𝐵. Thus when Δ divides 𝐵, uniform padding is opti-

mal among all preencryption schemes of maximum expansion 𝐵.

Arguably, a more general treatment would consider the optimum

over the class of preencryption schemes with some fixed average
expansion. Indeed their attack can be extended to this more gen-

eral setting, yielding a less optimal lower bound of 1/(4
⌈

2𝐵
Δ

⌉
) for

padding limited to an average expansion of 𝐵/2.
When compared to [36], the security model of Tezcan and Vaude-

nay allows one to evaluate and compare the efficacy of preencryp-

tion schemes, which [36] does not. However, it overlooks the fact

that the size of the padding may leak during decryption, as is the

case in the attack described in [36]. Another significant limitation

is the fact that the adversary is allowed only one encryption query.

As we show in Sections 4 and 5, this turns out to be a critical factor

for the near optimality of uniform padding, as it no longer holds

when this restriction is lifted.

B APPLICATION TO THE CRIME ATTACK
Until now, we have focused solely on statistical distance as our

primary security measure. To get a better sense of what this means

in practice, we now consider the effect of length-hiding padding on

the well-known CRIME attack [42]. CRIME and other variants like

BREACH [20] are chosen plaintext attacks that exploit compression

in TLS or higher-layer applications to recover some secret—typically

a secure cookie. The attack assumes a malicious script running

on the victim’s machine that can make HTTP requests to a TLS-

protected website, including the secure cookie. Note, however, that

the script does not have direct access to the cookie and thus cannot

see its value. The attack further assumes that the adversary is able

to sniff the victim’s encrypted HTTP requests and observe their

lengths. The BREACH attack acts similarly but instead targets the

HTTP responses returned by the server and their lengths.

The compression algorithm that enables the attack is the ubiqui-

tous DEFLATE algorithmwhich combines Lempel-Ziv and Huffman

coding. The Lempel-Ziv coding in DEFLATE allows for compressing

a message containing multiple instances of the same string within

that message. CRIME and BREACH exploit the Lempel-Ziv com-

pression in DEFLATE to guess the secret cookie one byte at a time.

Namely, the encrypted HTTP message will contain a string such

as ‘cookie=I+ldQbtvMmfJn146zhRX’, and the malicious script will

inject a second string of the form ‘cookie=?’, where ? represents a

guess of the first cookie byte. An incorrect guess means that only 7

characters will be matched, but a correct guess will match 8 charac-

ters, resulting in a compressed message that is one byte shorter. If

an encryption scheme like Galois Counter Mode (GCM) is used, the

one-byte difference in the message lengths will be propagated to

the ciphertext lengths. On the other hand, a block-aligned scheme

like CBC encryption does not help either, since the malicious script

can pad the message so that the extra byte falls on a block bound-

ary and the adversary would still be able to detect the single-byte

compression. Once the first character is guessed correctly, the at-

tacker injects the string ‘cookie=I?’ to guess the second character

Attack Performance vs Padding Overhead

Overhead 0 bytes 50 bytes 100 bytes 200 bytes

Uniform
Queries 192 19,367 38,569 76,883

Succ. Prob. 1.0 1.0 1.0 1.0

Gaussian
Queries 192 576,000 2,304,000 7,680,000

Succ. Prob. 1.0 0.0026 0.0058 0.0026

Laplace
Queries 192 576,000 2,304,000 7,680,000

Succ. Prob. 1.0 0.2116 0.2714 0.673

Figure 9: Comparing the performance of different padding
distributions on the of the CRIME attack.

and proceed this way until the full secret is recovered. Assuming a

base64 32-character long cookie, the above attack would require

around 1024 queries on average. Rizzo and Duong describe how to

reduce this by employing a binary search where a single message

includes multiple guesses. This way, each character requires only 6

queries, and the whole secret can be recovered in 192 queries.

Length-hiding padding can be used to substantially increase

the number of queries required to mount the attack. How much

overhead one is willing to accept is very specific to the application

at hand. However, it is conceivable that once the number of re-

quired queries reaches a sufficiently large value, say in the millions,

the attack would be detected or prevented by rate-limiting coun-

termeasures that are already in place to prevent denial-of-service

attacks. We have simulated this attack in a proof-of-concept imple-

mentation to measure how each padding distribution affects the

success of the attack. Once again, Gaussian padding emerged as

the favoured choice, with Laplace performing about two orders of

magnitude worse and uniform padding performing significantly

worse. Namely, for the attack to require a certain number of queries,

uniform padding results in much more bandwidth overhead than

the other two alternatives. For Gaussian and Laplace padding, when

the cover difference is kept low, the best that the adversary can

do is to reduce his chance of making an incorrect guess as low as

possible. A single incorrect guess at any of the intermediate steps

in the attack is enough to foil the success of the whole attack. As

such, the best strategy, in this case, is to repeat each query a fixed

number of times, calculate the average to reduce the noise from the

padding, and decide how to proceed based on that average value.

On the other hand, an attacker can do much better with respect

to uniform padding since it can be certain that it has made the

right guess at every intermediate step in the attack. For instance, if

the padding length ranges from 0 to 50 bytes and the adversary is

trying to determine whether the compressed message length is 100

bytes or 99 bytes, a padded message that is 150 bytes long could

only have originated from the former case. Similarly, a padded mes-

sage length of 99 bytes can only originate from the latter case. As

such, the adversary can keep on making queries until it observes a

padded message length that by itself identifies the unpadded mes-

sage length with certainty. With this approach, the attack succeeds

with probability one, but the required number of queries varies

with each run of the attack.



Figure 9 shows the results of our simulations. The overhead rep-

resents the average padding length (in bytes) for each distribution.

For the Gaussian and Laplace, we fixed the number of queries and

calculated the success probabilities by running the attack 5,000

times and dividing the number of successes by the total number of

attempts. For uniform padding, we instead calculated the expected

number of queries required by the attack over 5,000 trials. In the

case of uniform padding, at every step, the adversary is waiting for

exactly one padding length value to emerge. For an overhead of

100, the probability of this padding length being sampled is 1/200.

Since this follows a geometric distribution, the expected number of

queries (at each step) to sample this value is 200. The attack requires

192 steps, and thus the theoretically expected value is 192 × 200,

which closely matches our experimental results. As such, the num-

ber of expected queries increases linearly with the overhead. On the

other hand, we have chosen the number of queries for the Gaussian

and Laplace so that the success probability for the Gaussian stayed

close to 0.002. We then observe that in this case, the number of

queries increases, more or less, quadratically with the overhead.

This is in agreement with our observation from Section 5 that their

statistical distance increases proportionally to

√
𝑞. From the above

calculations, we then observe that for uniform padding to increase

the expected number of queries up to 7,680,000 would require an

overhead of 20,000 bytes per message. In contrast, the Gaussian

distribution requires only 200 bytes!

C IMPLEMENTING GAUSSIAN PADDING
Gaussian padding is not as straightforward to implement as uni-

form padding, and some caution is necessary to avoid potential

pitfalls. That said, the Gaussian distribution plays a prominent role

in other areas of cryptography, such as Differential Privacy and

Lattice-based cryptography, and consequently, it has received a

fair amount of scrutiny. The chief concern when implementing

Gaussian padding is to protect against side-channel attacks, i.e., not

to leak the size of the padding through timing information. Indeed,

cache-timing attacks on the Gaussian-noise-sampling procedure

have been used to break implementations of the lattice-based sig-

nature scheme BLISS, for example [10]. In our treatment, we have

always assumed that the padding size is unknown to the adversary,

and the presence of such a side channel would clearly invalidate

our analysis.

In response to this, a number of follow-up works have pro-

posed algorithms for sampling Gaussian distributions in constant

time [5, 22, 24, 32]. However, it should be noted that in lattice-

based cryptography, the discrete form of a Gaussian distribution is

typically obtained by measuring the amplitude of the continuous

probability density function at integer values. On the other hand

in [22] Hüsing et al. propose the use of a rounded discrete Gaussian

as it is relatively easy to implement in constant time. A rounded

Gaussian corresponds to sampling from a continuous Gaussian

distribution and then rounding the output to the closest integer.

In our analysis, we assumed a rounded Gaussian distribution and

accordingly, the simple approach described in [22] is particularly

well-suited for our setting.

The approach proposed in [22] is based on the Box-Muller trans-

form [9], which we now adapt to our setting. The basic Box-Muller

transform, reproducded below in Algorithm 1, takes two uniformly-

distributed samples and maps them to two independent samples

from a continous Gaussian distribution. The samples from 𝑁 (`, 𝜎)
are then given by: ⌊𝑧1 · 𝜎⌉ + ` and ⌊𝑧2 · 𝜎⌉ + ` and discarding both
samples if either value is less than zero.

Algorithm 1: Box-Muller Transform

Input :Two random samples 𝑢1 and 𝑢2 from𝑈 (1)
Output :Two random samples 𝑧1 and 𝑧2 from 𝑁 (0, 1)
𝑟 ←
√
−2 ln𝑢1

\ ← 2𝜋𝑢2

𝑧1 ← 𝑟 cos\ ; 𝑧2 ← 𝑟 sin\

return (𝑧1, 𝑧2)
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